Description: The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rege0subm | |- ( 0 [,) +oo ) e. ( SubMnd ` CCfld ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
2 | 1 | sseli | |- ( x e. ( 0 [,) +oo ) -> x e. RR ) |
3 | 2 | recnd | |- ( x e. ( 0 [,) +oo ) -> x e. CC ) |
4 | ge0addcl | |- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x + y ) e. ( 0 [,) +oo ) ) |
|
5 | 0e0icopnf | |- 0 e. ( 0 [,) +oo ) |
|
6 | 3 4 5 | cnsubmlem | |- ( 0 [,) +oo ) e. ( SubMnd ` CCfld ) |