Description: The nonnegative reals form a submonoid of the complex numbers. (Contributed by Mario Carneiro, 20-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rege0subm | |- ( 0 [,) +oo ) e. ( SubMnd ` CCfld )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rge0ssre | |- ( 0 [,) +oo ) C_ RR  | 
						|
| 2 | 1 | sseli | |- ( x e. ( 0 [,) +oo ) -> x e. RR )  | 
						
| 3 | 2 | recnd | |- ( x e. ( 0 [,) +oo ) -> x e. CC )  | 
						
| 4 | ge0addcl | |- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x + y ) e. ( 0 [,) +oo ) )  | 
						|
| 5 | 0e0icopnf | |- 0 e. ( 0 [,) +oo )  | 
						|
| 6 | 3 4 5 | cnsubmlem | |- ( 0 [,) +oo ) e. ( SubMnd ` CCfld )  |