Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> C e. RR+ ) |
2 |
|
simpl |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> N e. ZZ ) |
3 |
|
simpr |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( C e. RR+ /\ C =/= 1 ) ) |
4 |
|
reglogexp |
|- ( ( C e. RR+ /\ N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( C ^ N ) ) / ( log ` C ) ) = ( N x. ( ( log ` C ) / ( log ` C ) ) ) ) |
5 |
1 2 3 4
|
syl3anc |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( C ^ N ) ) / ( log ` C ) ) = ( N x. ( ( log ` C ) / ( log ` C ) ) ) ) |
6 |
|
reglogbas |
|- ( ( C e. RR+ /\ C =/= 1 ) -> ( ( log ` C ) / ( log ` C ) ) = 1 ) |
7 |
6
|
adantl |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` C ) / ( log ` C ) ) = 1 ) |
8 |
7
|
oveq2d |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( N x. ( ( log ` C ) / ( log ` C ) ) ) = ( N x. 1 ) ) |
9 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
10 |
9
|
adantr |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> N e. CC ) |
11 |
10
|
mulid1d |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( N x. 1 ) = N ) |
12 |
5 8 11
|
3eqtrd |
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( C ^ N ) ) / ( log ` C ) ) = N ) |