Metamath Proof Explorer


Theorem reglogexpbas

Description: General log of a power of the base is the exponent. (Contributed by Stefan O'Rear, 19-Sep-2014) (New usage is discouraged.) Use relogbexp instead.

Ref Expression
Assertion reglogexpbas
|- ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( C ^ N ) ) / ( log ` C ) ) = N )

Proof

Step Hyp Ref Expression
1 simprl
 |-  ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> C e. RR+ )
2 simpl
 |-  ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> N e. ZZ )
3 simpr
 |-  ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( C e. RR+ /\ C =/= 1 ) )
4 reglogexp
 |-  ( ( C e. RR+ /\ N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( C ^ N ) ) / ( log ` C ) ) = ( N x. ( ( log ` C ) / ( log ` C ) ) ) )
5 1 2 3 4 syl3anc
 |-  ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( C ^ N ) ) / ( log ` C ) ) = ( N x. ( ( log ` C ) / ( log ` C ) ) ) )
6 reglogbas
 |-  ( ( C e. RR+ /\ C =/= 1 ) -> ( ( log ` C ) / ( log ` C ) ) = 1 )
7 6 adantl
 |-  ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` C ) / ( log ` C ) ) = 1 )
8 7 oveq2d
 |-  ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( N x. ( ( log ` C ) / ( log ` C ) ) ) = ( N x. 1 ) )
9 zcn
 |-  ( N e. ZZ -> N e. CC )
10 9 adantr
 |-  ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> N e. CC )
11 10 mulid1d
 |-  ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( N x. 1 ) = N )
12 5 8 11 3eqtrd
 |-  ( ( N e. ZZ /\ ( C e. RR+ /\ C =/= 1 ) ) -> ( ( log ` ( C ^ N ) ) / ( log ` C ) ) = N )