| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logleb |
|- ( ( A e. RR+ /\ B e. RR+ ) -> ( A <_ B <-> ( log ` A ) <_ ( log ` B ) ) ) |
| 2 |
1
|
adantr |
|- ( ( ( A e. RR+ /\ B e. RR+ ) /\ ( C e. RR+ /\ 1 < C ) ) -> ( A <_ B <-> ( log ` A ) <_ ( log ` B ) ) ) |
| 3 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
| 4 |
3
|
ad2antrr |
|- ( ( ( A e. RR+ /\ B e. RR+ ) /\ ( C e. RR+ /\ 1 < C ) ) -> ( log ` A ) e. RR ) |
| 5 |
|
relogcl |
|- ( B e. RR+ -> ( log ` B ) e. RR ) |
| 6 |
5
|
ad2antlr |
|- ( ( ( A e. RR+ /\ B e. RR+ ) /\ ( C e. RR+ /\ 1 < C ) ) -> ( log ` B ) e. RR ) |
| 7 |
|
relogcl |
|- ( C e. RR+ -> ( log ` C ) e. RR ) |
| 8 |
7
|
ad2antrl |
|- ( ( ( A e. RR+ /\ B e. RR+ ) /\ ( C e. RR+ /\ 1 < C ) ) -> ( log ` C ) e. RR ) |
| 9 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 10 |
|
1rp |
|- 1 e. RR+ |
| 11 |
|
logltb |
|- ( ( 1 e. RR+ /\ C e. RR+ ) -> ( 1 < C <-> ( log ` 1 ) < ( log ` C ) ) ) |
| 12 |
10 11
|
mpan |
|- ( C e. RR+ -> ( 1 < C <-> ( log ` 1 ) < ( log ` C ) ) ) |
| 13 |
12
|
biimpa |
|- ( ( C e. RR+ /\ 1 < C ) -> ( log ` 1 ) < ( log ` C ) ) |
| 14 |
9 13
|
eqbrtrrid |
|- ( ( C e. RR+ /\ 1 < C ) -> 0 < ( log ` C ) ) |
| 15 |
14
|
adantl |
|- ( ( ( A e. RR+ /\ B e. RR+ ) /\ ( C e. RR+ /\ 1 < C ) ) -> 0 < ( log ` C ) ) |
| 16 |
|
lediv1 |
|- ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR /\ ( ( log ` C ) e. RR /\ 0 < ( log ` C ) ) ) -> ( ( log ` A ) <_ ( log ` B ) <-> ( ( log ` A ) / ( log ` C ) ) <_ ( ( log ` B ) / ( log ` C ) ) ) ) |
| 17 |
4 6 8 15 16
|
syl112anc |
|- ( ( ( A e. RR+ /\ B e. RR+ ) /\ ( C e. RR+ /\ 1 < C ) ) -> ( ( log ` A ) <_ ( log ` B ) <-> ( ( log ` A ) / ( log ` C ) ) <_ ( ( log ` B ) / ( log ` C ) ) ) ) |
| 18 |
2 17
|
bitrd |
|- ( ( ( A e. RR+ /\ B e. RR+ ) /\ ( C e. RR+ /\ 1 < C ) ) -> ( A <_ B <-> ( ( log ` A ) / ( log ` C ) ) <_ ( ( log ` B ) / ( log ` C ) ) ) ) |