Description: A regular space is R_1, which means that any two topologically distinct points can be separated by neighborhoods. (Contributed by Mario Carneiro, 25-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | regr1 | |- ( J e. Reg -> ( KQ ` J ) e. Haus ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | regtop | |- ( J e. Reg -> J e. Top ) |
|
2 | toptopon2 | |- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
|
3 | 1 2 | sylib | |- ( J e. Reg -> J e. ( TopOn ` U. J ) ) |
4 | eqid | |- ( x e. U. J |-> { y e. J | x e. y } ) = ( x e. U. J |-> { y e. J | x e. y } ) |
|
5 | 4 | regr1lem2 | |- ( ( J e. ( TopOn ` U. J ) /\ J e. Reg ) -> ( KQ ` J ) e. Haus ) |
6 | 3 5 | mpancom | |- ( J e. Reg -> ( KQ ` J ) e. Haus ) |