Metamath Proof Explorer


Theorem regr1

Description: A regular space is R_1, which means that any two topologically distinct points can be separated by neighborhoods. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion regr1
|- ( J e. Reg -> ( KQ ` J ) e. Haus )

Proof

Step Hyp Ref Expression
1 regtop
 |-  ( J e. Reg -> J e. Top )
2 toptopon2
 |-  ( J e. Top <-> J e. ( TopOn ` U. J ) )
3 1 2 sylib
 |-  ( J e. Reg -> J e. ( TopOn ` U. J ) )
4 eqid
 |-  ( x e. U. J |-> { y e. J | x e. y } ) = ( x e. U. J |-> { y e. J | x e. y } )
5 4 regr1lem2
 |-  ( ( J e. ( TopOn ` U. J ) /\ J e. Reg ) -> ( KQ ` J ) e. Haus )
6 3 5 mpancom
 |-  ( J e. Reg -> ( KQ ` J ) e. Haus )