Step |
Hyp |
Ref |
Expression |
1 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
2 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
3 |
|
cnring |
|- CCfld e. Ring |
4 |
|
ringcmn |
|- ( CCfld e. Ring -> CCfld e. CMnd ) |
5 |
3 4
|
mp1i |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> CCfld e. CMnd ) |
6 |
|
simp3 |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> I e. V ) |
7 |
|
simp1 |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> F : I --> RR ) |
8 |
|
ax-resscn |
|- RR C_ CC |
9 |
|
fss |
|- ( ( F : I --> RR /\ RR C_ CC ) -> F : I --> CC ) |
10 |
7 8 9
|
sylancl |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> F : I --> CC ) |
11 |
|
ssidd |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( F supp 0 ) C_ ( F supp 0 ) ) |
12 |
|
simp2 |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> F finSupp 0 ) |
13 |
1 2 5 6 10 11 12
|
gsumres |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( CCfld gsum ( F |` ( F supp 0 ) ) ) = ( CCfld gsum F ) ) |
14 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
15 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
16 |
8
|
a1i |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> RR C_ CC ) |
17 |
|
0red |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> 0 e. RR ) |
18 |
|
simpr |
|- ( ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) /\ x e. CC ) -> x e. CC ) |
19 |
18
|
addid2d |
|- ( ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) /\ x e. CC ) -> ( 0 + x ) = x ) |
20 |
18
|
addid1d |
|- ( ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) /\ x e. CC ) -> ( x + 0 ) = x ) |
21 |
19 20
|
jca |
|- ( ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) /\ x e. CC ) -> ( ( 0 + x ) = x /\ ( x + 0 ) = x ) ) |
22 |
1 14 15 5 6 16 7 17 21
|
gsumress |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( CCfld gsum F ) = ( RRfld gsum F ) ) |
23 |
13 22
|
eqtr2d |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( RRfld gsum F ) = ( CCfld gsum ( F |` ( F supp 0 ) ) ) ) |
24 |
|
suppssdm |
|- ( F supp 0 ) C_ dom F |
25 |
24 7
|
fssdm |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( F supp 0 ) C_ I ) |
26 |
7 25
|
feqresmpt |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( F |` ( F supp 0 ) ) = ( x e. ( F supp 0 ) |-> ( F ` x ) ) ) |
27 |
26
|
oveq2d |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( CCfld gsum ( F |` ( F supp 0 ) ) ) = ( CCfld gsum ( x e. ( F supp 0 ) |-> ( F ` x ) ) ) ) |
28 |
12
|
fsuppimpd |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( F supp 0 ) e. Fin ) |
29 |
|
simpl1 |
|- ( ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) /\ x e. ( F supp 0 ) ) -> F : I --> RR ) |
30 |
25
|
sselda |
|- ( ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) /\ x e. ( F supp 0 ) ) -> x e. I ) |
31 |
29 30
|
ffvelrnd |
|- ( ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) /\ x e. ( F supp 0 ) ) -> ( F ` x ) e. RR ) |
32 |
8 31
|
sselid |
|- ( ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) /\ x e. ( F supp 0 ) ) -> ( F ` x ) e. CC ) |
33 |
28 32
|
gsumfsum |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( CCfld gsum ( x e. ( F supp 0 ) |-> ( F ` x ) ) ) = sum_ x e. ( F supp 0 ) ( F ` x ) ) |
34 |
23 27 33
|
3eqtrd |
|- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( RRfld gsum F ) = sum_ x e. ( F supp 0 ) ( F ` x ) ) |