Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
2 |
1
|
rexmet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
3 |
|
eqid |
|- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
4 |
1 3
|
tgioo |
|- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
5 |
4
|
methaus |
|- ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) -> ( topGen ` ran (,) ) e. Haus ) |
6 |
2 5
|
ax-mp |
|- ( topGen ` ran (,) ) e. Haus |