| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 2 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
| 3 |
2
|
oveq2i |
|- ( A + ( _i x. 0 ) ) = ( A + 0 ) |
| 4 |
|
addrid |
|- ( A e. CC -> ( A + 0 ) = A ) |
| 5 |
3 4
|
eqtrid |
|- ( A e. CC -> ( A + ( _i x. 0 ) ) = A ) |
| 6 |
1 5
|
syl |
|- ( A e. RR -> ( A + ( _i x. 0 ) ) = A ) |
| 7 |
6
|
fveq2d |
|- ( A e. RR -> ( Im ` ( A + ( _i x. 0 ) ) ) = ( Im ` A ) ) |
| 8 |
|
0re |
|- 0 e. RR |
| 9 |
|
crim |
|- ( ( A e. RR /\ 0 e. RR ) -> ( Im ` ( A + ( _i x. 0 ) ) ) = 0 ) |
| 10 |
8 9
|
mpan2 |
|- ( A e. RR -> ( Im ` ( A + ( _i x. 0 ) ) ) = 0 ) |
| 11 |
7 10
|
eqtr3d |
|- ( A e. RR -> ( Im ` A ) = 0 ) |