Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
3 |
2
|
oveq2i |
|- ( A + ( _i x. 0 ) ) = ( A + 0 ) |
4 |
|
addid1 |
|- ( A e. CC -> ( A + 0 ) = A ) |
5 |
3 4
|
eqtrid |
|- ( A e. CC -> ( A + ( _i x. 0 ) ) = A ) |
6 |
1 5
|
syl |
|- ( A e. RR -> ( A + ( _i x. 0 ) ) = A ) |
7 |
6
|
fveq2d |
|- ( A e. RR -> ( Im ` ( A + ( _i x. 0 ) ) ) = ( Im ` A ) ) |
8 |
|
0re |
|- 0 e. RR |
9 |
|
crim |
|- ( ( A e. RR /\ 0 e. RR ) -> ( Im ` ( A + ( _i x. 0 ) ) ) = 0 ) |
10 |
8 9
|
mpan2 |
|- ( A e. RR -> ( Im ` ( A + ( _i x. 0 ) ) ) = 0 ) |
11 |
7 10
|
eqtr3d |
|- ( A e. RR -> ( Im ` A ) = 0 ) |