Step |
Hyp |
Ref |
Expression |
1 |
|
reim0 |
|- ( A e. RR -> ( Im ` A ) = 0 ) |
2 |
|
replim |
|- ( A e. CC -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
3 |
2
|
adantr |
|- ( ( A e. CC /\ ( Im ` A ) = 0 ) -> A = ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) ) |
4 |
|
oveq2 |
|- ( ( Im ` A ) = 0 -> ( _i x. ( Im ` A ) ) = ( _i x. 0 ) ) |
5 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
6 |
4 5
|
eqtrdi |
|- ( ( Im ` A ) = 0 -> ( _i x. ( Im ` A ) ) = 0 ) |
7 |
6
|
oveq2d |
|- ( ( Im ` A ) = 0 -> ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) = ( ( Re ` A ) + 0 ) ) |
8 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
9 |
8
|
recnd |
|- ( A e. CC -> ( Re ` A ) e. CC ) |
10 |
9
|
addid1d |
|- ( A e. CC -> ( ( Re ` A ) + 0 ) = ( Re ` A ) ) |
11 |
7 10
|
sylan9eqr |
|- ( ( A e. CC /\ ( Im ` A ) = 0 ) -> ( ( Re ` A ) + ( _i x. ( Im ` A ) ) ) = ( Re ` A ) ) |
12 |
3 11
|
eqtrd |
|- ( ( A e. CC /\ ( Im ` A ) = 0 ) -> A = ( Re ` A ) ) |
13 |
8
|
adantr |
|- ( ( A e. CC /\ ( Im ` A ) = 0 ) -> ( Re ` A ) e. RR ) |
14 |
12 13
|
eqeltrd |
|- ( ( A e. CC /\ ( Im ` A ) = 0 ) -> A e. RR ) |
15 |
14
|
ex |
|- ( A e. CC -> ( ( Im ` A ) = 0 -> A e. RR ) ) |
16 |
1 15
|
impbid2 |
|- ( A e. CC -> ( A e. RR <-> ( Im ` A ) = 0 ) ) |