Metamath Proof Explorer


Theorem reim0bd

Description: A number is real iff its imaginary part is 0. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1
|- ( ph -> A e. CC )
reim0bd.2
|- ( ph -> ( Im ` A ) = 0 )
Assertion reim0bd
|- ( ph -> A e. RR )

Proof

Step Hyp Ref Expression
1 recld.1
 |-  ( ph -> A e. CC )
2 reim0bd.2
 |-  ( ph -> ( Im ` A ) = 0 )
3 reim0b
 |-  ( A e. CC -> ( A e. RR <-> ( Im ` A ) = 0 ) )
4 1 3 syl
 |-  ( ph -> ( A e. RR <-> ( Im ` A ) = 0 ) )
5 2 4 mpbird
 |-  ( ph -> A e. RR )