Description: A number is real iff its imaginary part is 0. (Contributed by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | recld.1 | |- ( ph -> A e. CC ) |
|
reim0bd.2 | |- ( ph -> ( Im ` A ) = 0 ) |
||
Assertion | reim0bd | |- ( ph -> A e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recld.1 | |- ( ph -> A e. CC ) |
|
2 | reim0bd.2 | |- ( ph -> ( Im ` A ) = 0 ) |
|
3 | reim0b | |- ( A e. CC -> ( A e. RR <-> ( Im ` A ) = 0 ) ) |
|
4 | 1 3 | syl | |- ( ph -> ( A e. RR <-> ( Im ` A ) = 0 ) ) |
5 | 2 4 | mpbird | |- ( ph -> A e. RR ) |