Metamath Proof Explorer


Theorem reipcl

Description: An inner product of an element with itself is real. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses reipcl.v
|- V = ( Base ` W )
reipcl.h
|- ., = ( .i ` W )
Assertion reipcl
|- ( ( W e. CPreHil /\ A e. V ) -> ( A ., A ) e. RR )

Proof

Step Hyp Ref Expression
1 reipcl.v
 |-  V = ( Base ` W )
2 reipcl.h
 |-  ., = ( .i ` W )
3 eqid
 |-  ( norm ` W ) = ( norm ` W )
4 1 2 3 nmsq
 |-  ( ( W e. CPreHil /\ A e. V ) -> ( ( ( norm ` W ) ` A ) ^ 2 ) = ( A ., A ) )
5 cphngp
 |-  ( W e. CPreHil -> W e. NrmGrp )
6 1 3 nmcl
 |-  ( ( W e. NrmGrp /\ A e. V ) -> ( ( norm ` W ) ` A ) e. RR )
7 5 6 sylan
 |-  ( ( W e. CPreHil /\ A e. V ) -> ( ( norm ` W ) ` A ) e. RR )
8 7 resqcld
 |-  ( ( W e. CPreHil /\ A e. V ) -> ( ( ( norm ` W ) ` A ) ^ 2 ) e. RR )
9 4 8 eqeltrrd
 |-  ( ( W e. CPreHil /\ A e. V ) -> ( A ., A ) e. RR )