| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relcnv |
|- Rel `' R |
| 2 |
1
|
brrelex12i |
|- ( A `' R B -> ( A e. _V /\ B e. _V ) ) |
| 3 |
2
|
a1i |
|- ( Rel R -> ( A `' R B -> ( A e. _V /\ B e. _V ) ) ) |
| 4 |
|
brrelex12 |
|- ( ( Rel R /\ B R A ) -> ( B e. _V /\ A e. _V ) ) |
| 5 |
4
|
ancomd |
|- ( ( Rel R /\ B R A ) -> ( A e. _V /\ B e. _V ) ) |
| 6 |
5
|
ex |
|- ( Rel R -> ( B R A -> ( A e. _V /\ B e. _V ) ) ) |
| 7 |
|
brcnvg |
|- ( ( A e. _V /\ B e. _V ) -> ( A `' R B <-> B R A ) ) |
| 8 |
7
|
a1i |
|- ( Rel R -> ( ( A e. _V /\ B e. _V ) -> ( A `' R B <-> B R A ) ) ) |
| 9 |
3 6 8
|
pm5.21ndd |
|- ( Rel R -> ( A `' R B <-> B R A ) ) |