Step |
Hyp |
Ref |
Expression |
1 |
|
relcnv |
|- Rel `' R |
2 |
1
|
brrelex12i |
|- ( A `' R B -> ( A e. _V /\ B e. _V ) ) |
3 |
2
|
a1i |
|- ( Rel R -> ( A `' R B -> ( A e. _V /\ B e. _V ) ) ) |
4 |
|
brrelex12 |
|- ( ( Rel R /\ B R A ) -> ( B e. _V /\ A e. _V ) ) |
5 |
4
|
ancomd |
|- ( ( Rel R /\ B R A ) -> ( A e. _V /\ B e. _V ) ) |
6 |
5
|
ex |
|- ( Rel R -> ( B R A -> ( A e. _V /\ B e. _V ) ) ) |
7 |
|
brcnvg |
|- ( ( A e. _V /\ B e. _V ) -> ( A `' R B <-> B R A ) ) |
8 |
7
|
a1i |
|- ( Rel R -> ( ( A e. _V /\ B e. _V ) -> ( A `' R B <-> B R A ) ) ) |
9 |
3 6 8
|
pm5.21ndd |
|- ( Rel R -> ( A `' R B <-> B R A ) ) |