Description: A converse is a relation. Theorem 12 of Suppes p. 62. (Contributed by NM, 29-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relcnv | |- Rel `' A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv | |- `' A = { <. x , y >. | y A x } |
|
| 2 | 1 | relopabiv | |- Rel `' A |