Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | relcnvexb | |- ( Rel R -> ( R e. _V <-> `' R e. _V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvexg | |- ( R e. _V -> `' R e. _V ) |
|
2 | dfrel2 | |- ( Rel R <-> `' `' R = R ) |
|
3 | cnvexg | |- ( `' R e. _V -> `' `' R e. _V ) |
|
4 | eleq1 | |- ( `' `' R = R -> ( `' `' R e. _V <-> R e. _V ) ) |
|
5 | 3 4 | syl5ib | |- ( `' `' R = R -> ( `' R e. _V -> R e. _V ) ) |
6 | 2 5 | sylbi | |- ( Rel R -> ( `' R e. _V -> R e. _V ) ) |
7 | 1 6 | impbid2 | |- ( Rel R -> ( R e. _V <-> `' R e. _V ) ) |