Metamath Proof Explorer


Theorem relcnvexb

Description: A relation is a set iff its converse is a set. (Contributed by FL, 3-Mar-2007)

Ref Expression
Assertion relcnvexb
|- ( Rel R -> ( R e. _V <-> `' R e. _V ) )

Proof

Step Hyp Ref Expression
1 cnvexg
 |-  ( R e. _V -> `' R e. _V )
2 dfrel2
 |-  ( Rel R <-> `' `' R = R )
3 cnvexg
 |-  ( `' R e. _V -> `' `' R e. _V )
4 eleq1
 |-  ( `' `' R = R -> ( `' `' R e. _V <-> R e. _V ) )
5 3 4 syl5ib
 |-  ( `' `' R = R -> ( `' R e. _V -> R e. _V ) )
6 2 5 sylbi
 |-  ( Rel R -> ( `' R e. _V -> R e. _V ) )
7 1 6 impbid2
 |-  ( Rel R -> ( R e. _V <-> `' R e. _V ) )