Description: if R is a relation, its double union equals the double union of its converse. (Contributed by FL, 5-Jan-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | relcnvfld | |- ( Rel R -> U. U. R = U. U. `' R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relfld | |- ( Rel R -> U. U. R = ( dom R u. ran R ) ) |
|
2 | unidmrn | |- U. U. `' R = ( dom R u. ran R ) |
|
3 | 1 2 | eqtr4di | |- ( Rel R -> U. U. R = U. U. `' R ) |