Metamath Proof Explorer


Theorem relcnvtr

Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011) (Proof shortened by Peter Mazsa, 17-Oct-2023)

Ref Expression
Assertion relcnvtr
|- ( Rel R -> ( ( R o. R ) C_ R <-> ( `' R o. `' R ) C_ `' R ) )

Proof

Step Hyp Ref Expression
1 3anidm
 |-  ( ( Rel R /\ Rel R /\ Rel R ) <-> Rel R )
2 relcnvtrg
 |-  ( ( Rel R /\ Rel R /\ Rel R ) -> ( ( R o. R ) C_ R <-> ( `' R o. `' R ) C_ `' R ) )
3 1 2 sylbir
 |-  ( Rel R -> ( ( R o. R ) C_ R <-> ( `' R o. `' R ) C_ `' R ) )