Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011) (Proof shortened by Peter Mazsa, 17-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | relcnvtr | |- ( Rel R -> ( ( R o. R ) C_ R <-> ( `' R o. `' R ) C_ `' R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anidm | |- ( ( Rel R /\ Rel R /\ Rel R ) <-> Rel R ) |
|
2 | relcnvtrg | |- ( ( Rel R /\ Rel R /\ Rel R ) -> ( ( R o. R ) C_ R <-> ( `' R o. `' R ) C_ `' R ) ) |
|
3 | 1 2 | sylbir | |- ( Rel R -> ( ( R o. R ) C_ R <-> ( `' R o. `' R ) C_ `' R ) ) |