Metamath Proof Explorer


Theorem relcoi1

Description: Composition with the identity relation restricted to a relation's field. (Contributed by FL, 8-May-2011) (Proof shortened by OpenAI, 3-Jul-2020)

Ref Expression
Assertion relcoi1
|- ( Rel R -> ( R o. ( _I |` U. U. R ) ) = R )

Proof

Step Hyp Ref Expression
1 coires1
 |-  ( R o. ( _I |` U. U. R ) ) = ( R |` U. U. R )
2 relresfld
 |-  ( Rel R -> ( R |` U. U. R ) = R )
3 1 2 eqtrid
 |-  ( Rel R -> ( R o. ( _I |` U. U. R ) ) = R )