Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | reldif | |- ( Rel A -> Rel ( A \ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss | |- ( A \ B ) C_ A |
|
2 | relss | |- ( ( A \ B ) C_ A -> ( Rel A -> Rel ( A \ B ) ) ) |
|
3 | 1 2 | ax-mp | |- ( Rel A -> Rel ( A \ B ) ) |