| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reseq2 |  |-  ( dom R = ( A u. B ) -> ( R |` dom R ) = ( R |` ( A u. B ) ) ) | 
						
							| 2 | 1 | 3ad2ant2 |  |-  ( ( Rel R /\ dom R = ( A u. B ) /\ ( A i^i B ) = (/) ) -> ( R |` dom R ) = ( R |` ( A u. B ) ) ) | 
						
							| 3 |  | resdm |  |-  ( Rel R -> ( R |` dom R ) = R ) | 
						
							| 4 | 3 | 3ad2ant1 |  |-  ( ( Rel R /\ dom R = ( A u. B ) /\ ( A i^i B ) = (/) ) -> ( R |` dom R ) = R ) | 
						
							| 5 |  | resundi |  |-  ( R |` ( A u. B ) ) = ( ( R |` A ) u. ( R |` B ) ) | 
						
							| 6 | 5 | a1i |  |-  ( ( Rel R /\ dom R = ( A u. B ) /\ ( A i^i B ) = (/) ) -> ( R |` ( A u. B ) ) = ( ( R |` A ) u. ( R |` B ) ) ) | 
						
							| 7 | 2 4 6 | 3eqtr3d |  |-  ( ( Rel R /\ dom R = ( A u. B ) /\ ( A i^i B ) = (/) ) -> R = ( ( R |` A ) u. ( R |` B ) ) ) |