| Step | Hyp | Ref | Expression | 
						
							| 1 |  | releldm2 |  |-  ( Rel A -> ( y e. dom A <-> E. z e. A ( 1st ` z ) = y ) ) | 
						
							| 2 |  | fvex |  |-  ( 1st ` x ) e. _V | 
						
							| 3 |  | eqid |  |-  ( x e. A |-> ( 1st ` x ) ) = ( x e. A |-> ( 1st ` x ) ) | 
						
							| 4 | 2 3 | fnmpti |  |-  ( x e. A |-> ( 1st ` x ) ) Fn A | 
						
							| 5 |  | fvelrnb |  |-  ( ( x e. A |-> ( 1st ` x ) ) Fn A -> ( y e. ran ( x e. A |-> ( 1st ` x ) ) <-> E. z e. A ( ( x e. A |-> ( 1st ` x ) ) ` z ) = y ) ) | 
						
							| 6 | 4 5 | ax-mp |  |-  ( y e. ran ( x e. A |-> ( 1st ` x ) ) <-> E. z e. A ( ( x e. A |-> ( 1st ` x ) ) ` z ) = y ) | 
						
							| 7 |  | fveq2 |  |-  ( x = z -> ( 1st ` x ) = ( 1st ` z ) ) | 
						
							| 8 |  | fvex |  |-  ( 1st ` z ) e. _V | 
						
							| 9 | 7 3 8 | fvmpt |  |-  ( z e. A -> ( ( x e. A |-> ( 1st ` x ) ) ` z ) = ( 1st ` z ) ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( z e. A -> ( ( ( x e. A |-> ( 1st ` x ) ) ` z ) = y <-> ( 1st ` z ) = y ) ) | 
						
							| 11 | 10 | rexbiia |  |-  ( E. z e. A ( ( x e. A |-> ( 1st ` x ) ) ` z ) = y <-> E. z e. A ( 1st ` z ) = y ) | 
						
							| 12 | 11 | a1i |  |-  ( Rel A -> ( E. z e. A ( ( x e. A |-> ( 1st ` x ) ) ` z ) = y <-> E. z e. A ( 1st ` z ) = y ) ) | 
						
							| 13 | 6 12 | bitr2id |  |-  ( Rel A -> ( E. z e. A ( 1st ` z ) = y <-> y e. ran ( x e. A |-> ( 1st ` x ) ) ) ) | 
						
							| 14 | 1 13 | bitrd |  |-  ( Rel A -> ( y e. dom A <-> y e. ran ( x e. A |-> ( 1st ` x ) ) ) ) | 
						
							| 15 | 14 | eqrdv |  |-  ( Rel A -> dom A = ran ( x e. A |-> ( 1st ` x ) ) ) |