Metamath Proof Explorer


Theorem reldmdsmm

Description: The direct sum is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015)

Ref Expression
Assertion reldmdsmm
|- Rel dom (+)m

Proof

Step Hyp Ref Expression
1 df-dsmm
 |-  (+)m = ( s e. _V , r e. _V |-> ( ( s Xs_ r ) |`s { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } ) )
2 1 reldmmpo
 |-  Rel dom (+)m