Metamath Proof Explorer


Theorem reldmevls

Description: Well-behaved binary operation property of evalSub . (Contributed by Stefan O'Rear, 19-Mar-2015)

Ref Expression
Assertion reldmevls
|- Rel dom evalSub

Proof

Step Hyp Ref Expression
1 df-evls
 |-  evalSub = ( i e. _V , s e. CRing |-> [_ ( Base ` s ) / b ]_ ( r e. ( SubRing ` s ) |-> [_ ( i mPoly ( s |`s r ) ) / w ]_ ( iota_ f e. ( w RingHom ( s ^s ( b ^m i ) ) ) ( ( f o. ( algSc ` w ) ) = ( x e. r |-> ( ( b ^m i ) X. { x } ) ) /\ ( f o. ( i mVar ( s |`s r ) ) ) = ( x e. i |-> ( g e. ( b ^m i ) |-> ( g ` x ) ) ) ) ) ) )
2 1 reldmmpo
 |-  Rel dom evalSub