Metamath Proof Explorer


Theorem reldmghm

Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion reldmghm
|- Rel dom GrpHom

Proof

Step Hyp Ref Expression
1 df-ghm
 |-  GrpHom = ( s e. Grp , t e. Grp |-> { g | [. ( Base ` s ) / w ]. ( g : w --> ( Base ` t ) /\ A. x e. w A. y e. w ( g ` ( x ( +g ` s ) y ) ) = ( ( g ` x ) ( +g ` t ) ( g ` y ) ) ) } )
2 1 reldmmpo
 |-  Rel dom GrpHom