| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngop.1 |  |-  F = ( x e. A , y e. B |-> C ) | 
						
							| 2 |  | reldmoprab |  |-  Rel dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } | 
						
							| 3 |  | df-mpo |  |-  ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } | 
						
							| 4 | 1 3 | eqtri |  |-  F = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } | 
						
							| 5 | 4 | dmeqi |  |-  dom F = dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } | 
						
							| 6 | 5 | releqi |  |-  ( Rel dom F <-> Rel dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } ) | 
						
							| 7 | 2 6 | mpbir |  |-  Rel dom F |