Description: Lemma for ordered power series. (Contributed by Stefan O'Rear, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | reldmopsr | |- Rel dom ordPwSer |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opsr | |- ordPwSer = ( i e. _V , s e. _V |-> ( r e. ~P ( i X. i ) |-> [_ ( i mPwSer s ) / p ]_ ( p sSet <. ( le ` ndx ) , { <. x , y >. | ( { x , y } C_ ( Base ` p ) /\ ( [. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } / d ]. E. z e. d ( ( x ` z ) ( lt ` s ) ( y ` z ) /\ A. w e. d ( w ( r |
|
2 | 1 | reldmmpo | |- Rel dom ordPwSer |