| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex |  |-  (/) e. _V | 
						
							| 2 | 1 | eldm |  |-  ( (/) e. dom F <-> E. y (/) F y ) | 
						
							| 3 |  | brtpos0 |  |-  ( y e. _V -> ( (/) tpos F y <-> (/) F y ) ) | 
						
							| 4 | 3 | elv |  |-  ( (/) tpos F y <-> (/) F y ) | 
						
							| 5 |  | 0nelrel0 |  |-  ( Rel dom tpos F -> -. (/) e. dom tpos F ) | 
						
							| 6 |  | vex |  |-  y e. _V | 
						
							| 7 | 1 6 | breldm |  |-  ( (/) tpos F y -> (/) e. dom tpos F ) | 
						
							| 8 | 5 7 | nsyl3 |  |-  ( (/) tpos F y -> -. Rel dom tpos F ) | 
						
							| 9 | 4 8 | sylbir |  |-  ( (/) F y -> -. Rel dom tpos F ) | 
						
							| 10 | 9 | exlimiv |  |-  ( E. y (/) F y -> -. Rel dom tpos F ) | 
						
							| 11 | 2 10 | sylbi |  |-  ( (/) e. dom F -> -. Rel dom tpos F ) | 
						
							| 12 | 11 | con2i |  |-  ( Rel dom tpos F -> -. (/) e. dom F ) | 
						
							| 13 |  | vex |  |-  x e. _V | 
						
							| 14 | 13 | eldm |  |-  ( x e. dom tpos F <-> E. y x tpos F y ) | 
						
							| 15 |  | relcnv |  |-  Rel `' dom F | 
						
							| 16 |  | df-rel |  |-  ( Rel `' dom F <-> `' dom F C_ ( _V X. _V ) ) | 
						
							| 17 | 15 16 | mpbi |  |-  `' dom F C_ ( _V X. _V ) | 
						
							| 18 | 17 | sseli |  |-  ( x e. `' dom F -> x e. ( _V X. _V ) ) | 
						
							| 19 | 18 | a1i |  |-  ( ( -. (/) e. dom F /\ x tpos F y ) -> ( x e. `' dom F -> x e. ( _V X. _V ) ) ) | 
						
							| 20 |  | elsni |  |-  ( x e. { (/) } -> x = (/) ) | 
						
							| 21 | 20 | breq1d |  |-  ( x e. { (/) } -> ( x tpos F y <-> (/) tpos F y ) ) | 
						
							| 22 | 1 6 | breldm |  |-  ( (/) F y -> (/) e. dom F ) | 
						
							| 23 | 22 | pm2.24d |  |-  ( (/) F y -> ( -. (/) e. dom F -> x e. ( _V X. _V ) ) ) | 
						
							| 24 | 4 23 | sylbi |  |-  ( (/) tpos F y -> ( -. (/) e. dom F -> x e. ( _V X. _V ) ) ) | 
						
							| 25 | 21 24 | biimtrdi |  |-  ( x e. { (/) } -> ( x tpos F y -> ( -. (/) e. dom F -> x e. ( _V X. _V ) ) ) ) | 
						
							| 26 | 25 | com3l |  |-  ( x tpos F y -> ( -. (/) e. dom F -> ( x e. { (/) } -> x e. ( _V X. _V ) ) ) ) | 
						
							| 27 | 26 | impcom |  |-  ( ( -. (/) e. dom F /\ x tpos F y ) -> ( x e. { (/) } -> x e. ( _V X. _V ) ) ) | 
						
							| 28 |  | brtpos2 |  |-  ( y e. _V -> ( x tpos F y <-> ( x e. ( `' dom F u. { (/) } ) /\ U. `' { x } F y ) ) ) | 
						
							| 29 | 6 28 | ax-mp |  |-  ( x tpos F y <-> ( x e. ( `' dom F u. { (/) } ) /\ U. `' { x } F y ) ) | 
						
							| 30 | 29 | simplbi |  |-  ( x tpos F y -> x e. ( `' dom F u. { (/) } ) ) | 
						
							| 31 |  | elun |  |-  ( x e. ( `' dom F u. { (/) } ) <-> ( x e. `' dom F \/ x e. { (/) } ) ) | 
						
							| 32 | 30 31 | sylib |  |-  ( x tpos F y -> ( x e. `' dom F \/ x e. { (/) } ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( -. (/) e. dom F /\ x tpos F y ) -> ( x e. `' dom F \/ x e. { (/) } ) ) | 
						
							| 34 | 19 27 33 | mpjaod |  |-  ( ( -. (/) e. dom F /\ x tpos F y ) -> x e. ( _V X. _V ) ) | 
						
							| 35 | 34 | ex |  |-  ( -. (/) e. dom F -> ( x tpos F y -> x e. ( _V X. _V ) ) ) | 
						
							| 36 | 35 | exlimdv |  |-  ( -. (/) e. dom F -> ( E. y x tpos F y -> x e. ( _V X. _V ) ) ) | 
						
							| 37 | 14 36 | biimtrid |  |-  ( -. (/) e. dom F -> ( x e. dom tpos F -> x e. ( _V X. _V ) ) ) | 
						
							| 38 | 37 | ssrdv |  |-  ( -. (/) e. dom F -> dom tpos F C_ ( _V X. _V ) ) | 
						
							| 39 |  | df-rel |  |-  ( Rel dom tpos F <-> dom tpos F C_ ( _V X. _V ) ) | 
						
							| 40 | 38 39 | sylibr |  |-  ( -. (/) e. dom F -> Rel dom tpos F ) | 
						
							| 41 | 12 40 | impbii |  |-  ( Rel dom tpos F <-> -. (/) e. dom F ) |