Description: The divides relation is a relation. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | reldvdsr.1 | |- .|| = ( ||r ` R ) |
|
| Assertion | reldvdsr | |- Rel .|| |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldvdsr.1 | |- .|| = ( ||r ` R ) |
|
| 2 | df-dvdsr | |- ||r = ( w e. _V |-> { <. x , y >. | ( x e. ( Base ` w ) /\ E. z e. ( Base ` w ) ( z ( .r ` w ) x ) = y ) } ) |
|
| 3 | 2 | relmptopab | |- Rel ( ||r ` R ) |
| 4 | 1 | releqi | |- ( Rel .|| <-> Rel ( ||r ` R ) ) |
| 5 | 3 4 | mpbir | |- Rel .|| |