| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
| 2 |
1
|
recnd |
|- ( A e. CC -> ( Re ` A ) e. CC ) |
| 3 |
|
abscl |
|- ( ( Re ` A ) e. CC -> ( abs ` ( Re ` A ) ) e. RR ) |
| 4 |
2 3
|
syl |
|- ( A e. CC -> ( abs ` ( Re ` A ) ) e. RR ) |
| 5 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
| 6 |
|
leabs |
|- ( ( Re ` A ) e. RR -> ( Re ` A ) <_ ( abs ` ( Re ` A ) ) ) |
| 7 |
1 6
|
syl |
|- ( A e. CC -> ( Re ` A ) <_ ( abs ` ( Re ` A ) ) ) |
| 8 |
|
absrele |
|- ( A e. CC -> ( abs ` ( Re ` A ) ) <_ ( abs ` A ) ) |
| 9 |
1 4 5 7 8
|
letrd |
|- ( A e. CC -> ( Re ` A ) <_ ( abs ` A ) ) |