Metamath Proof Explorer


Theorem releabsi

Description: The real part of a number is less than or equal to its absolute value. Proposition 10-3.7(d) of Gleason p. 133. (Contributed by NM, 2-Oct-1999)

Ref Expression
Hypothesis absvalsqi.1
|- A e. CC
Assertion releabsi
|- ( Re ` A ) <_ ( abs ` A )

Proof

Step Hyp Ref Expression
1 absvalsqi.1
 |-  A e. CC
2 releabs
 |-  ( A e. CC -> ( Re ` A ) <_ ( abs ` A ) )
3 1 2 ax-mp
 |-  ( Re ` A ) <_ ( abs ` A )