Description: The first argument of a binary relation belongs to its domain. Note that A R B does not imply Rel R : see for example nrelv and brv . (Contributed by NM, 2-Jul-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | releldm | |- ( ( Rel R /\ A R B ) -> A e. dom R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelex1 | |- ( ( Rel R /\ A R B ) -> A e. _V ) |
|
| 2 | brrelex2 | |- ( ( Rel R /\ A R B ) -> B e. _V ) |
|
| 3 | simpr | |- ( ( Rel R /\ A R B ) -> A R B ) |
|
| 4 | breldmg | |- ( ( A e. _V /\ B e. _V /\ A R B ) -> A e. dom R ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ( Rel R /\ A R B ) -> A e. dom R ) |