| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex |  |-  ( B e. dom A -> B e. _V ) | 
						
							| 2 | 1 | anim2i |  |-  ( ( Rel A /\ B e. dom A ) -> ( Rel A /\ B e. _V ) ) | 
						
							| 3 |  | id |  |-  ( ( 1st ` x ) = B -> ( 1st ` x ) = B ) | 
						
							| 4 |  | fvex |  |-  ( 1st ` x ) e. _V | 
						
							| 5 | 3 4 | eqeltrrdi |  |-  ( ( 1st ` x ) = B -> B e. _V ) | 
						
							| 6 | 5 | rexlimivw |  |-  ( E. x e. A ( 1st ` x ) = B -> B e. _V ) | 
						
							| 7 | 6 | anim2i |  |-  ( ( Rel A /\ E. x e. A ( 1st ` x ) = B ) -> ( Rel A /\ B e. _V ) ) | 
						
							| 8 |  | eldm2g |  |-  ( B e. _V -> ( B e. dom A <-> E. y <. B , y >. e. A ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( Rel A /\ B e. _V ) -> ( B e. dom A <-> E. y <. B , y >. e. A ) ) | 
						
							| 10 |  | df-rel |  |-  ( Rel A <-> A C_ ( _V X. _V ) ) | 
						
							| 11 |  | ssel |  |-  ( A C_ ( _V X. _V ) -> ( x e. A -> x e. ( _V X. _V ) ) ) | 
						
							| 12 | 10 11 | sylbi |  |-  ( Rel A -> ( x e. A -> x e. ( _V X. _V ) ) ) | 
						
							| 13 | 12 | imp |  |-  ( ( Rel A /\ x e. A ) -> x e. ( _V X. _V ) ) | 
						
							| 14 |  | op1steq |  |-  ( x e. ( _V X. _V ) -> ( ( 1st ` x ) = B <-> E. y x = <. B , y >. ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( Rel A /\ x e. A ) -> ( ( 1st ` x ) = B <-> E. y x = <. B , y >. ) ) | 
						
							| 16 | 15 | rexbidva |  |-  ( Rel A -> ( E. x e. A ( 1st ` x ) = B <-> E. x e. A E. y x = <. B , y >. ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( Rel A /\ B e. _V ) -> ( E. x e. A ( 1st ` x ) = B <-> E. x e. A E. y x = <. B , y >. ) ) | 
						
							| 18 |  | rexcom4 |  |-  ( E. x e. A E. y x = <. B , y >. <-> E. y E. x e. A x = <. B , y >. ) | 
						
							| 19 |  | risset |  |-  ( <. B , y >. e. A <-> E. x e. A x = <. B , y >. ) | 
						
							| 20 | 19 | exbii |  |-  ( E. y <. B , y >. e. A <-> E. y E. x e. A x = <. B , y >. ) | 
						
							| 21 | 18 20 | bitr4i |  |-  ( E. x e. A E. y x = <. B , y >. <-> E. y <. B , y >. e. A ) | 
						
							| 22 | 17 21 | bitrdi |  |-  ( ( Rel A /\ B e. _V ) -> ( E. x e. A ( 1st ` x ) = B <-> E. y <. B , y >. e. A ) ) | 
						
							| 23 | 9 22 | bitr4d |  |-  ( ( Rel A /\ B e. _V ) -> ( B e. dom A <-> E. x e. A ( 1st ` x ) = B ) ) | 
						
							| 24 | 2 7 23 | pm5.21nd |  |-  ( Rel A -> ( B e. dom A <-> E. x e. A ( 1st ` x ) = B ) ) |