Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | releldmb | |- ( Rel R -> ( A e. dom R <-> E. x A R x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg | |- ( A e. dom R -> ( A e. dom R <-> E. x A R x ) ) |
|
2 | 1 | ibi | |- ( A e. dom R -> E. x A R x ) |
3 | releldm | |- ( ( Rel R /\ A R x ) -> A e. dom R ) |
|
4 | 3 | ex | |- ( Rel R -> ( A R x -> A e. dom R ) ) |
5 | 4 | exlimdv | |- ( Rel R -> ( E. x A R x -> A e. dom R ) ) |
6 | 2 5 | impbid2 | |- ( Rel R -> ( A e. dom R <-> E. x A R x ) ) |