Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | releldmb | |- ( Rel R -> ( A e. dom R <-> E. x A R x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmg | |- ( A e. dom R -> ( A e. dom R <-> E. x A R x ) ) |
|
| 2 | 1 | ibi | |- ( A e. dom R -> E. x A R x ) |
| 3 | releldm | |- ( ( Rel R /\ A R x ) -> A e. dom R ) |
|
| 4 | 3 | ex | |- ( Rel R -> ( A R x -> A e. dom R ) ) |
| 5 | 4 | exlimdv | |- ( Rel R -> ( E. x A R x -> A e. dom R ) ) |
| 6 | 2 5 | impbid2 | |- ( Rel R -> ( A e. dom R <-> E. x A R x ) ) |