Metamath Proof Explorer


Theorem releldmb

Description: Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015)

Ref Expression
Assertion releldmb
|- ( Rel R -> ( A e. dom R <-> E. x A R x ) )

Proof

Step Hyp Ref Expression
1 eldmg
 |-  ( A e. dom R -> ( A e. dom R <-> E. x A R x ) )
2 1 ibi
 |-  ( A e. dom R -> E. x A R x )
3 releldm
 |-  ( ( Rel R /\ A R x ) -> A e. dom R )
4 3 ex
 |-  ( Rel R -> ( A R x -> A e. dom R ) )
5 4 exlimdv
 |-  ( Rel R -> ( E. x A R x -> A e. dom R ) )
6 2 5 impbid2
 |-  ( Rel R -> ( A e. dom R <-> E. x A R x ) )