Description: The first argument of a binary relation belongs to its domain. (Contributed by NM, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | releldm.1 | |- Rel R |
|
| Assertion | releldmi | |- ( A R B -> A e. dom R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releldm.1 | |- Rel R |
|
| 2 | releldm | |- ( ( Rel R /\ A R B ) -> A e. dom R ) |
|
| 3 | 1 2 | mpan | |- ( A R B -> A e. dom R ) |