Description: Membership in an equivalence class when R is a relation. (Contributed by Mario Carneiro, 11-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | relelec | |- ( Rel R -> ( A e. [ B ] R <-> B R A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |- ( A e. [ B ] R -> A e. _V ) |
|
2 | ecexr | |- ( A e. [ B ] R -> B e. _V ) |
|
3 | 1 2 | jca | |- ( A e. [ B ] R -> ( A e. _V /\ B e. _V ) ) |
4 | 3 | adantl | |- ( ( Rel R /\ A e. [ B ] R ) -> ( A e. _V /\ B e. _V ) ) |
5 | brrelex12 | |- ( ( Rel R /\ B R A ) -> ( B e. _V /\ A e. _V ) ) |
|
6 | 5 | ancomd | |- ( ( Rel R /\ B R A ) -> ( A e. _V /\ B e. _V ) ) |
7 | elecg | |- ( ( A e. _V /\ B e. _V ) -> ( A e. [ B ] R <-> B R A ) ) |
|
8 | 4 6 7 | pm5.21nd | |- ( Rel R -> ( A e. [ B ] R <-> B R A ) ) |