Metamath Proof Explorer


Theorem relelec

Description: Membership in an equivalence class when R is a relation. (Contributed by Mario Carneiro, 11-Sep-2015)

Ref Expression
Assertion relelec
|- ( Rel R -> ( A e. [ B ] R <-> B R A ) )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( A e. [ B ] R -> A e. _V )
2 ecexr
 |-  ( A e. [ B ] R -> B e. _V )
3 1 2 jca
 |-  ( A e. [ B ] R -> ( A e. _V /\ B e. _V ) )
4 3 adantl
 |-  ( ( Rel R /\ A e. [ B ] R ) -> ( A e. _V /\ B e. _V ) )
5 brrelex12
 |-  ( ( Rel R /\ B R A ) -> ( B e. _V /\ A e. _V ) )
6 5 ancomd
 |-  ( ( Rel R /\ B R A ) -> ( A e. _V /\ B e. _V ) )
7 elecg
 |-  ( ( A e. _V /\ B e. _V ) -> ( A e. [ B ] R <-> B R A ) )
8 4 6 7 pm5.21nd
 |-  ( Rel R -> ( A e. [ B ] R <-> B R A ) )