Description: Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relelrnb | |- ( Rel R -> ( A e. ran R <-> E. x x R A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elrng | |- ( A e. ran R -> ( A e. ran R <-> E. x x R A ) ) | |
| 2 | 1 | ibi | |- ( A e. ran R -> E. x x R A ) | 
| 3 | relelrn | |- ( ( Rel R /\ x R A ) -> A e. ran R ) | |
| 4 | 3 | ex | |- ( Rel R -> ( x R A -> A e. ran R ) ) | 
| 5 | 4 | exlimdv | |- ( Rel R -> ( E. x x R A -> A e. ran R ) ) | 
| 6 | 2 5 | impbid2 | |- ( Rel R -> ( A e. ran R <-> E. x x R A ) ) |