Metamath Proof Explorer


Theorem relelrnb

Description: Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015)

Ref Expression
Assertion relelrnb
|- ( Rel R -> ( A e. ran R <-> E. x x R A ) )

Proof

Step Hyp Ref Expression
1 elrng
 |-  ( A e. ran R -> ( A e. ran R <-> E. x x R A ) )
2 1 ibi
 |-  ( A e. ran R -> E. x x R A )
3 relelrn
 |-  ( ( Rel R /\ x R A ) -> A e. ran R )
4 3 ex
 |-  ( Rel R -> ( x R A -> A e. ran R ) )
5 4 exlimdv
 |-  ( Rel R -> ( E. x x R A -> A e. ran R ) )
6 2 5 impbid2
 |-  ( Rel R -> ( A e. ran R <-> E. x x R A ) )