Description: Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | relelrnb | |- ( Rel R -> ( A e. ran R <-> E. x x R A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrng | |- ( A e. ran R -> ( A e. ran R <-> E. x x R A ) ) |
|
2 | 1 | ibi | |- ( A e. ran R -> E. x x R A ) |
3 | relelrn | |- ( ( Rel R /\ x R A ) -> A e. ran R ) |
|
4 | 3 | ex | |- ( Rel R -> ( x R A -> A e. ran R ) ) |
5 | 4 | exlimdv | |- ( Rel R -> ( E. x x R A -> A e. ran R ) ) |
6 | 2 5 | impbid2 | |- ( Rel R -> ( A e. ran R <-> E. x x R A ) ) |