Step |
Hyp |
Ref |
Expression |
1 |
|
dmfi |
|- ( A e. Fin -> dom A e. Fin ) |
2 |
|
rnfi |
|- ( A e. Fin -> ran A e. Fin ) |
3 |
1 2
|
jca |
|- ( A e. Fin -> ( dom A e. Fin /\ ran A e. Fin ) ) |
4 |
|
xpfi |
|- ( ( dom A e. Fin /\ ran A e. Fin ) -> ( dom A X. ran A ) e. Fin ) |
5 |
|
relssdmrn |
|- ( Rel A -> A C_ ( dom A X. ran A ) ) |
6 |
|
ssfi |
|- ( ( ( dom A X. ran A ) e. Fin /\ A C_ ( dom A X. ran A ) ) -> A e. Fin ) |
7 |
4 5 6
|
syl2anr |
|- ( ( Rel A /\ ( dom A e. Fin /\ ran A e. Fin ) ) -> A e. Fin ) |
8 |
7
|
ex |
|- ( Rel A -> ( ( dom A e. Fin /\ ran A e. Fin ) -> A e. Fin ) ) |
9 |
3 8
|
impbid2 |
|- ( Rel A -> ( A e. Fin <-> ( dom A e. Fin /\ ran A e. Fin ) ) ) |