Metamath Proof Explorer


Theorem relfld

Description: The double union of a relation is its field. (Contributed by NM, 17-Sep-2006)

Ref Expression
Assertion relfld
|- ( Rel R -> U. U. R = ( dom R u. ran R ) )

Proof

Step Hyp Ref Expression
1 relssdmrn
 |-  ( Rel R -> R C_ ( dom R X. ran R ) )
2 uniss
 |-  ( R C_ ( dom R X. ran R ) -> U. R C_ U. ( dom R X. ran R ) )
3 uniss
 |-  ( U. R C_ U. ( dom R X. ran R ) -> U. U. R C_ U. U. ( dom R X. ran R ) )
4 1 2 3 3syl
 |-  ( Rel R -> U. U. R C_ U. U. ( dom R X. ran R ) )
5 unixpss
 |-  U. U. ( dom R X. ran R ) C_ ( dom R u. ran R )
6 4 5 sstrdi
 |-  ( Rel R -> U. U. R C_ ( dom R u. ran R ) )
7 dmrnssfld
 |-  ( dom R u. ran R ) C_ U. U. R
8 7 a1i
 |-  ( Rel R -> ( dom R u. ran R ) C_ U. U. R )
9 6 8 eqssd
 |-  ( Rel R -> U. U. R = ( dom R u. ran R ) )