Metamath Proof Explorer


Theorem reliin

Description: An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014)

Ref Expression
Assertion reliin
|- ( E. x e. A Rel B -> Rel |^|_ x e. A B )

Proof

Step Hyp Ref Expression
1 iinss
 |-  ( E. x e. A B C_ ( _V X. _V ) -> |^|_ x e. A B C_ ( _V X. _V ) )
2 df-rel
 |-  ( Rel B <-> B C_ ( _V X. _V ) )
3 2 rexbii
 |-  ( E. x e. A Rel B <-> E. x e. A B C_ ( _V X. _V ) )
4 df-rel
 |-  ( Rel |^|_ x e. A B <-> |^|_ x e. A B C_ ( _V X. _V ) )
5 1 3 4 3imtr4i
 |-  ( E. x e. A Rel B -> Rel |^|_ x e. A B )