Description: An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | reliin | |- ( E. x e. A Rel B -> Rel |^|_ x e. A B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinss | |- ( E. x e. A B C_ ( _V X. _V ) -> |^|_ x e. A B C_ ( _V X. _V ) ) |
|
2 | df-rel | |- ( Rel B <-> B C_ ( _V X. _V ) ) |
|
3 | 2 | rexbii | |- ( E. x e. A Rel B <-> E. x e. A B C_ ( _V X. _V ) ) |
4 | df-rel | |- ( Rel |^|_ x e. A B <-> |^|_ x e. A B C_ ( _V X. _V ) ) |
|
5 | 1 3 4 | 3imtr4i | |- ( E. x e. A Rel B -> Rel |^|_ x e. A B ) |