| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relmpoopab.1 |
|- F = ( x e. A , y e. B |-> { <. z , w >. | ph } ) |
| 2 |
|
relopabv |
|- Rel { <. z , w >. | ph } |
| 3 |
|
df-rel |
|- ( Rel { <. z , w >. | ph } <-> { <. z , w >. | ph } C_ ( _V X. _V ) ) |
| 4 |
2 3
|
mpbi |
|- { <. z , w >. | ph } C_ ( _V X. _V ) |
| 5 |
4
|
rgen2w |
|- A. x e. A A. y e. B { <. z , w >. | ph } C_ ( _V X. _V ) |
| 6 |
1
|
ovmptss |
|- ( A. x e. A A. y e. B { <. z , w >. | ph } C_ ( _V X. _V ) -> ( C F D ) C_ ( _V X. _V ) ) |
| 7 |
5 6
|
ax-mp |
|- ( C F D ) C_ ( _V X. _V ) |
| 8 |
|
df-rel |
|- ( Rel ( C F D ) <-> ( C F D ) C_ ( _V X. _V ) ) |
| 9 |
7 8
|
mpbir |
|- Rel ( C F D ) |