Metamath Proof Explorer


Theorem relmpoopab

Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypothesis relmpoopab.1
|- F = ( x e. A , y e. B |-> { <. z , w >. | ph } )
Assertion relmpoopab
|- Rel ( C F D )

Proof

Step Hyp Ref Expression
1 relmpoopab.1
 |-  F = ( x e. A , y e. B |-> { <. z , w >. | ph } )
2 relopabv
 |-  Rel { <. z , w >. | ph }
3 df-rel
 |-  ( Rel { <. z , w >. | ph } <-> { <. z , w >. | ph } C_ ( _V X. _V ) )
4 2 3 mpbi
 |-  { <. z , w >. | ph } C_ ( _V X. _V )
5 4 rgen2w
 |-  A. x e. A A. y e. B { <. z , w >. | ph } C_ ( _V X. _V )
6 1 ovmptss
 |-  ( A. x e. A A. y e. B { <. z , w >. | ph } C_ ( _V X. _V ) -> ( C F D ) C_ ( _V X. _V ) )
7 5 6 ax-mp
 |-  ( C F D ) C_ ( _V X. _V )
8 df-rel
 |-  ( Rel ( C F D ) <-> ( C F D ) C_ ( _V X. _V ) )
9 7 8 mpbir
 |-  Rel ( C F D )