Step |
Hyp |
Ref |
Expression |
1 |
|
relmptopab.1 |
|- F = ( x e. A |-> { <. y , z >. | ph } ) |
2 |
1
|
fvmptss |
|- ( A. x e. A { <. y , z >. | ph } C_ ( _V X. _V ) -> ( F ` B ) C_ ( _V X. _V ) ) |
3 |
|
relopab |
|- Rel { <. y , z >. | ph } |
4 |
|
df-rel |
|- ( Rel { <. y , z >. | ph } <-> { <. y , z >. | ph } C_ ( _V X. _V ) ) |
5 |
3 4
|
mpbi |
|- { <. y , z >. | ph } C_ ( _V X. _V ) |
6 |
5
|
a1i |
|- ( x e. A -> { <. y , z >. | ph } C_ ( _V X. _V ) ) |
7 |
2 6
|
mprg |
|- ( F ` B ) C_ ( _V X. _V ) |
8 |
|
df-rel |
|- ( Rel ( F ` B ) <-> ( F ` B ) C_ ( _V X. _V ) ) |
9 |
7 8
|
mpbir |
|- Rel ( F ` B ) |