Metamath Proof Explorer


Theorem relmptopab

Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 7-Aug-2014) (Proof shortened by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypothesis relmptopab.1
|- F = ( x e. A |-> { <. y , z >. | ph } )
Assertion relmptopab
|- Rel ( F ` B )

Proof

Step Hyp Ref Expression
1 relmptopab.1
 |-  F = ( x e. A |-> { <. y , z >. | ph } )
2 1 fvmptss
 |-  ( A. x e. A { <. y , z >. | ph } C_ ( _V X. _V ) -> ( F ` B ) C_ ( _V X. _V ) )
3 relopab
 |-  Rel { <. y , z >. | ph }
4 df-rel
 |-  ( Rel { <. y , z >. | ph } <-> { <. y , z >. | ph } C_ ( _V X. _V ) )
5 3 4 mpbi
 |-  { <. y , z >. | ph } C_ ( _V X. _V )
6 5 a1i
 |-  ( x e. A -> { <. y , z >. | ph } C_ ( _V X. _V ) )
7 2 6 mprg
 |-  ( F ` B ) C_ ( _V X. _V )
8 df-rel
 |-  ( Rel ( F ` B ) <-> ( F ` B ) C_ ( _V X. _V ) )
9 7 8 mpbir
 |-  Rel ( F ` B )