Step |
Hyp |
Ref |
Expression |
1 |
|
logcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
2 |
1
|
recld |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) e. RR ) |
3 |
|
relogef |
|- ( ( Re ` ( log ` A ) ) e. RR -> ( log ` ( exp ` ( Re ` ( log ` A ) ) ) ) = ( Re ` ( log ` A ) ) ) |
4 |
2 3
|
syl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` ( exp ` ( Re ` ( log ` A ) ) ) ) = ( Re ` ( log ` A ) ) ) |
5 |
|
absef |
|- ( ( log ` A ) e. CC -> ( abs ` ( exp ` ( log ` A ) ) ) = ( exp ` ( Re ` ( log ` A ) ) ) ) |
6 |
1 5
|
syl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( exp ` ( log ` A ) ) ) = ( exp ` ( Re ` ( log ` A ) ) ) ) |
7 |
|
eflog |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
8 |
7
|
fveq2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` ( exp ` ( log ` A ) ) ) = ( abs ` A ) ) |
9 |
6 8
|
eqtr3d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( Re ` ( log ` A ) ) ) = ( abs ` A ) ) |
10 |
9
|
fveq2d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` ( exp ` ( Re ` ( log ` A ) ) ) ) = ( log ` ( abs ` A ) ) ) |
11 |
4 10
|
eqtr3d |
|- ( ( A e. CC /\ A =/= 0 ) -> ( Re ` ( log ` A ) ) = ( log ` ( abs ` A ) ) ) |