Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> B e. RR+ ) |
2 |
1
|
rpcnne0d |
|- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> ( B e. CC /\ B =/= 0 ) ) |
3 |
|
simp3 |
|- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> B =/= 1 ) |
4 |
|
df-3an |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) <-> ( ( B e. CC /\ B =/= 0 ) /\ B =/= 1 ) ) |
5 |
2 3 4
|
sylanbrc |
|- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
6 |
|
eldifpr |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
7 |
5 6
|
sylibr |
|- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> B e. ( CC \ { 0 , 1 } ) ) |
8 |
|
simp2 |
|- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> X e. RR+ ) |
9 |
8
|
rpcnne0d |
|- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> ( X e. CC /\ X =/= 0 ) ) |
10 |
|
eldifsn |
|- ( X e. ( CC \ { 0 } ) <-> ( X e. CC /\ X =/= 0 ) ) |
11 |
9 10
|
sylibr |
|- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> X e. ( CC \ { 0 } ) ) |
12 |
|
logbval |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) |
13 |
7 11 12
|
syl2anc |
|- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) |
14 |
|
relogcl |
|- ( X e. RR+ -> ( log ` X ) e. RR ) |
15 |
14
|
3ad2ant2 |
|- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> ( log ` X ) e. RR ) |
16 |
|
relogcl |
|- ( B e. RR+ -> ( log ` B ) e. RR ) |
17 |
16
|
3ad2ant1 |
|- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> ( log ` B ) e. RR ) |
18 |
|
logne0 |
|- ( ( B e. RR+ /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) |
19 |
18
|
3adant2 |
|- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) |
20 |
15 17 19
|
redivcld |
|- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> ( ( log ` X ) / ( log ` B ) ) e. RR ) |
21 |
13 20
|
eqeltrd |
|- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> ( B logb X ) e. RR ) |