Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
|- ( B e. ( RR+ \ { 1 } ) <-> ( B e. RR+ /\ B =/= 1 ) ) |
2 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
3 |
2
|
adantr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B e. CC ) |
4 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
5 |
4
|
adantr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 0 ) |
6 |
|
simpr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 1 ) |
7 |
|
eldifpr |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
8 |
3 5 6 7
|
syl3anbrc |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B e. ( CC \ { 0 , 1 } ) ) |
9 |
1 8
|
sylbi |
|- ( B e. ( RR+ \ { 1 } ) -> B e. ( CC \ { 0 , 1 } ) ) |
10 |
|
eldifi |
|- ( B e. ( RR+ \ { 1 } ) -> B e. RR+ ) |
11 |
10 2
|
syl |
|- ( B e. ( RR+ \ { 1 } ) -> B e. CC ) |
12 |
|
recn |
|- ( X e. RR -> X e. CC ) |
13 |
|
cxpcl |
|- ( ( B e. CC /\ X e. CC ) -> ( B ^c X ) e. CC ) |
14 |
11 12 13
|
syl2an |
|- ( ( B e. ( RR+ \ { 1 } ) /\ X e. RR ) -> ( B ^c X ) e. CC ) |
15 |
11
|
adantr |
|- ( ( B e. ( RR+ \ { 1 } ) /\ X e. RR ) -> B e. CC ) |
16 |
1 5
|
sylbi |
|- ( B e. ( RR+ \ { 1 } ) -> B =/= 0 ) |
17 |
16
|
adantr |
|- ( ( B e. ( RR+ \ { 1 } ) /\ X e. RR ) -> B =/= 0 ) |
18 |
12
|
adantl |
|- ( ( B e. ( RR+ \ { 1 } ) /\ X e. RR ) -> X e. CC ) |
19 |
15 17 18
|
cxpne0d |
|- ( ( B e. ( RR+ \ { 1 } ) /\ X e. RR ) -> ( B ^c X ) =/= 0 ) |
20 |
|
eldifsn |
|- ( ( B ^c X ) e. ( CC \ { 0 } ) <-> ( ( B ^c X ) e. CC /\ ( B ^c X ) =/= 0 ) ) |
21 |
14 19 20
|
sylanbrc |
|- ( ( B e. ( RR+ \ { 1 } ) /\ X e. RR ) -> ( B ^c X ) e. ( CC \ { 0 } ) ) |
22 |
|
logbval |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( B ^c X ) e. ( CC \ { 0 } ) ) -> ( B logb ( B ^c X ) ) = ( ( log ` ( B ^c X ) ) / ( log ` B ) ) ) |
23 |
9 21 22
|
syl2an2r |
|- ( ( B e. ( RR+ \ { 1 } ) /\ X e. RR ) -> ( B logb ( B ^c X ) ) = ( ( log ` ( B ^c X ) ) / ( log ` B ) ) ) |
24 |
|
logcxp |
|- ( ( B e. RR+ /\ X e. RR ) -> ( log ` ( B ^c X ) ) = ( X x. ( log ` B ) ) ) |
25 |
10 24
|
sylan |
|- ( ( B e. ( RR+ \ { 1 } ) /\ X e. RR ) -> ( log ` ( B ^c X ) ) = ( X x. ( log ` B ) ) ) |
26 |
25
|
oveq1d |
|- ( ( B e. ( RR+ \ { 1 } ) /\ X e. RR ) -> ( ( log ` ( B ^c X ) ) / ( log ` B ) ) = ( ( X x. ( log ` B ) ) / ( log ` B ) ) ) |
27 |
|
eldif |
|- ( B e. ( RR+ \ { 1 } ) <-> ( B e. RR+ /\ -. B e. { 1 } ) ) |
28 |
|
rpcnne0 |
|- ( B e. RR+ -> ( B e. CC /\ B =/= 0 ) ) |
29 |
28
|
adantr |
|- ( ( B e. RR+ /\ -. B e. { 1 } ) -> ( B e. CC /\ B =/= 0 ) ) |
30 |
27 29
|
sylbi |
|- ( B e. ( RR+ \ { 1 } ) -> ( B e. CC /\ B =/= 0 ) ) |
31 |
|
logcl |
|- ( ( B e. CC /\ B =/= 0 ) -> ( log ` B ) e. CC ) |
32 |
30 31
|
syl |
|- ( B e. ( RR+ \ { 1 } ) -> ( log ` B ) e. CC ) |
33 |
32
|
adantr |
|- ( ( B e. ( RR+ \ { 1 } ) /\ X e. RR ) -> ( log ` B ) e. CC ) |
34 |
|
logne0 |
|- ( ( B e. RR+ /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) |
35 |
1 34
|
sylbi |
|- ( B e. ( RR+ \ { 1 } ) -> ( log ` B ) =/= 0 ) |
36 |
35
|
adantr |
|- ( ( B e. ( RR+ \ { 1 } ) /\ X e. RR ) -> ( log ` B ) =/= 0 ) |
37 |
18 33 36
|
divcan4d |
|- ( ( B e. ( RR+ \ { 1 } ) /\ X e. RR ) -> ( ( X x. ( log ` B ) ) / ( log ` B ) ) = X ) |
38 |
23 26 37
|
3eqtrd |
|- ( ( B e. ( RR+ \ { 1 } ) /\ X e. RR ) -> ( B logb ( B ^c X ) ) = X ) |