Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( Y = ( B logb X ) -> ( B ^c Y ) = ( B ^c ( B logb X ) ) ) |
2 |
1
|
eqcoms |
|- ( ( B logb X ) = Y -> ( B ^c Y ) = ( B ^c ( B logb X ) ) ) |
3 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
4 |
3
|
adantr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B e. CC ) |
5 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
6 |
5
|
adantr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 0 ) |
7 |
|
simpr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 1 ) |
8 |
|
eldifpr |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
9 |
4 6 7 8
|
syl3anbrc |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B e. ( CC \ { 0 , 1 } ) ) |
10 |
|
rpcndif0 |
|- ( X e. RR+ -> X e. ( CC \ { 0 } ) ) |
11 |
9 10
|
anim12i |
|- ( ( ( B e. RR+ /\ B =/= 1 ) /\ X e. RR+ ) -> ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) ) |
12 |
11
|
3adant3 |
|- ( ( ( B e. RR+ /\ B =/= 1 ) /\ X e. RR+ /\ Y e. RR ) -> ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) ) |
13 |
|
cxplogb |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B ^c ( B logb X ) ) = X ) |
14 |
12 13
|
syl |
|- ( ( ( B e. RR+ /\ B =/= 1 ) /\ X e. RR+ /\ Y e. RR ) -> ( B ^c ( B logb X ) ) = X ) |
15 |
2 14
|
sylan9eqr |
|- ( ( ( ( B e. RR+ /\ B =/= 1 ) /\ X e. RR+ /\ Y e. RR ) /\ ( B logb X ) = Y ) -> ( B ^c Y ) = X ) |
16 |
|
oveq2 |
|- ( X = ( B ^c Y ) -> ( B logb X ) = ( B logb ( B ^c Y ) ) ) |
17 |
16
|
eqcoms |
|- ( ( B ^c Y ) = X -> ( B logb X ) = ( B logb ( B ^c Y ) ) ) |
18 |
|
eldifsn |
|- ( B e. ( RR+ \ { 1 } ) <-> ( B e. RR+ /\ B =/= 1 ) ) |
19 |
18
|
biimpri |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B e. ( RR+ \ { 1 } ) ) |
20 |
19
|
anim1i |
|- ( ( ( B e. RR+ /\ B =/= 1 ) /\ Y e. RR ) -> ( B e. ( RR+ \ { 1 } ) /\ Y e. RR ) ) |
21 |
20
|
3adant2 |
|- ( ( ( B e. RR+ /\ B =/= 1 ) /\ X e. RR+ /\ Y e. RR ) -> ( B e. ( RR+ \ { 1 } ) /\ Y e. RR ) ) |
22 |
|
relogbcxp |
|- ( ( B e. ( RR+ \ { 1 } ) /\ Y e. RR ) -> ( B logb ( B ^c Y ) ) = Y ) |
23 |
21 22
|
syl |
|- ( ( ( B e. RR+ /\ B =/= 1 ) /\ X e. RR+ /\ Y e. RR ) -> ( B logb ( B ^c Y ) ) = Y ) |
24 |
17 23
|
sylan9eqr |
|- ( ( ( ( B e. RR+ /\ B =/= 1 ) /\ X e. RR+ /\ Y e. RR ) /\ ( B ^c Y ) = X ) -> ( B logb X ) = Y ) |
25 |
15 24
|
impbida |
|- ( ( ( B e. RR+ /\ B =/= 1 ) /\ X e. RR+ /\ Y e. RR ) -> ( ( B logb X ) = Y <-> ( B ^c Y ) = X ) ) |