Metamath Proof Explorer


Theorem relogbexp

Description: Identity law for general logarithm: the logarithm of a power to the base is the exponent. Property 6 of Cohen4 p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014) (Revised by AV, 9-Jun-2020)

Ref Expression
Assertion relogbexp
|- ( ( B e. RR+ /\ B =/= 1 /\ M e. ZZ ) -> ( B logb ( B ^ M ) ) = M )

Proof

Step Hyp Ref Expression
1 rpcn
 |-  ( B e. RR+ -> B e. CC )
2 1 adantr
 |-  ( ( B e. RR+ /\ B =/= 1 ) -> B e. CC )
3 rpne0
 |-  ( B e. RR+ -> B =/= 0 )
4 3 adantr
 |-  ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 0 )
5 simpr
 |-  ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 1 )
6 2 4 5 3jca
 |-  ( ( B e. RR+ /\ B =/= 1 ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) )
7 eldifpr
 |-  ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) )
8 6 7 sylibr
 |-  ( ( B e. RR+ /\ B =/= 1 ) -> B e. ( CC \ { 0 , 1 } ) )
9 relogbzexp
 |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ B e. RR+ /\ M e. ZZ ) -> ( B logb ( B ^ M ) ) = ( M x. ( B logb B ) ) )
10 8 9 stoic4a
 |-  ( ( B e. RR+ /\ B =/= 1 /\ M e. ZZ ) -> ( B logb ( B ^ M ) ) = ( M x. ( B logb B ) ) )
11 6 3adant3
 |-  ( ( B e. RR+ /\ B =/= 1 /\ M e. ZZ ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) )
12 logbid1
 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( B logb B ) = 1 )
13 11 12 syl
 |-  ( ( B e. RR+ /\ B =/= 1 /\ M e. ZZ ) -> ( B logb B ) = 1 )
14 13 oveq2d
 |-  ( ( B e. RR+ /\ B =/= 1 /\ M e. ZZ ) -> ( M x. ( B logb B ) ) = ( M x. 1 ) )
15 zcn
 |-  ( M e. ZZ -> M e. CC )
16 15 3ad2ant3
 |-  ( ( B e. RR+ /\ B =/= 1 /\ M e. ZZ ) -> M e. CC )
17 16 mulid1d
 |-  ( ( B e. RR+ /\ B =/= 1 /\ M e. ZZ ) -> ( M x. 1 ) = M )
18 10 14 17 3eqtrd
 |-  ( ( B e. RR+ /\ B =/= 1 /\ M e. ZZ ) -> ( B logb ( B ^ M ) ) = M )