Step |
Hyp |
Ref |
Expression |
1 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
2 |
1
|
adantr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B e. CC ) |
3 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
4 |
3
|
adantr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 0 ) |
5 |
|
simpr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 1 ) |
6 |
2 4 5
|
3jca |
|- ( ( B e. RR+ /\ B =/= 1 ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
7 |
|
eldifpr |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
8 |
6 7
|
sylibr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B e. ( CC \ { 0 , 1 } ) ) |
9 |
|
relogbzexp |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ B e. RR+ /\ M e. ZZ ) -> ( B logb ( B ^ M ) ) = ( M x. ( B logb B ) ) ) |
10 |
8 9
|
stoic4a |
|- ( ( B e. RR+ /\ B =/= 1 /\ M e. ZZ ) -> ( B logb ( B ^ M ) ) = ( M x. ( B logb B ) ) ) |
11 |
6
|
3adant3 |
|- ( ( B e. RR+ /\ B =/= 1 /\ M e. ZZ ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
12 |
|
logbid1 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( B logb B ) = 1 ) |
13 |
11 12
|
syl |
|- ( ( B e. RR+ /\ B =/= 1 /\ M e. ZZ ) -> ( B logb B ) = 1 ) |
14 |
13
|
oveq2d |
|- ( ( B e. RR+ /\ B =/= 1 /\ M e. ZZ ) -> ( M x. ( B logb B ) ) = ( M x. 1 ) ) |
15 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
16 |
15
|
3ad2ant3 |
|- ( ( B e. RR+ /\ B =/= 1 /\ M e. ZZ ) -> M e. CC ) |
17 |
16
|
mulid1d |
|- ( ( B e. RR+ /\ B =/= 1 /\ M e. ZZ ) -> ( M x. 1 ) = M ) |
18 |
10 14 17
|
3eqtrd |
|- ( ( B e. RR+ /\ B =/= 1 /\ M e. ZZ ) -> ( B logb ( B ^ M ) ) = M ) |