Step |
Hyp |
Ref |
Expression |
1 |
|
logcxp |
|- ( ( C e. RR+ /\ E e. RR ) -> ( log ` ( C ^c E ) ) = ( E x. ( log ` C ) ) ) |
2 |
1
|
3adant1 |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ /\ E e. RR ) -> ( log ` ( C ^c E ) ) = ( E x. ( log ` C ) ) ) |
3 |
2
|
oveq1d |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ /\ E e. RR ) -> ( ( log ` ( C ^c E ) ) / ( log ` B ) ) = ( ( E x. ( log ` C ) ) / ( log ` B ) ) ) |
4 |
|
recn |
|- ( E e. RR -> E e. CC ) |
5 |
4
|
3ad2ant3 |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ /\ E e. RR ) -> E e. CC ) |
6 |
|
rpcn |
|- ( C e. RR+ -> C e. CC ) |
7 |
|
rpne0 |
|- ( C e. RR+ -> C =/= 0 ) |
8 |
6 7
|
logcld |
|- ( C e. RR+ -> ( log ` C ) e. CC ) |
9 |
8
|
3ad2ant2 |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ /\ E e. RR ) -> ( log ` C ) e. CC ) |
10 |
|
eldifi |
|- ( B e. ( CC \ { 0 , 1 } ) -> B e. CC ) |
11 |
|
eldifpr |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
12 |
11
|
simp2bi |
|- ( B e. ( CC \ { 0 , 1 } ) -> B =/= 0 ) |
13 |
10 12
|
logcld |
|- ( B e. ( CC \ { 0 , 1 } ) -> ( log ` B ) e. CC ) |
14 |
|
logccne0 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) |
15 |
11 14
|
sylbi |
|- ( B e. ( CC \ { 0 , 1 } ) -> ( log ` B ) =/= 0 ) |
16 |
13 15
|
jca |
|- ( B e. ( CC \ { 0 , 1 } ) -> ( ( log ` B ) e. CC /\ ( log ` B ) =/= 0 ) ) |
17 |
16
|
3ad2ant1 |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ /\ E e. RR ) -> ( ( log ` B ) e. CC /\ ( log ` B ) =/= 0 ) ) |
18 |
|
divass |
|- ( ( E e. CC /\ ( log ` C ) e. CC /\ ( ( log ` B ) e. CC /\ ( log ` B ) =/= 0 ) ) -> ( ( E x. ( log ` C ) ) / ( log ` B ) ) = ( E x. ( ( log ` C ) / ( log ` B ) ) ) ) |
19 |
5 9 17 18
|
syl3anc |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ /\ E e. RR ) -> ( ( E x. ( log ` C ) ) / ( log ` B ) ) = ( E x. ( ( log ` C ) / ( log ` B ) ) ) ) |
20 |
3 19
|
eqtrd |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ /\ E e. RR ) -> ( ( log ` ( C ^c E ) ) / ( log ` B ) ) = ( E x. ( ( log ` C ) / ( log ` B ) ) ) ) |
21 |
|
simp1 |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ /\ E e. RR ) -> B e. ( CC \ { 0 , 1 } ) ) |
22 |
6
|
adantr |
|- ( ( C e. RR+ /\ E e. RR ) -> C e. CC ) |
23 |
4
|
adantl |
|- ( ( C e. RR+ /\ E e. RR ) -> E e. CC ) |
24 |
22 23
|
cxpcld |
|- ( ( C e. RR+ /\ E e. RR ) -> ( C ^c E ) e. CC ) |
25 |
7
|
adantr |
|- ( ( C e. RR+ /\ E e. RR ) -> C =/= 0 ) |
26 |
22 25 23
|
cxpne0d |
|- ( ( C e. RR+ /\ E e. RR ) -> ( C ^c E ) =/= 0 ) |
27 |
|
eldifsn |
|- ( ( C ^c E ) e. ( CC \ { 0 } ) <-> ( ( C ^c E ) e. CC /\ ( C ^c E ) =/= 0 ) ) |
28 |
24 26 27
|
sylanbrc |
|- ( ( C e. RR+ /\ E e. RR ) -> ( C ^c E ) e. ( CC \ { 0 } ) ) |
29 |
28
|
3adant1 |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ /\ E e. RR ) -> ( C ^c E ) e. ( CC \ { 0 } ) ) |
30 |
|
logbval |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( C ^c E ) e. ( CC \ { 0 } ) ) -> ( B logb ( C ^c E ) ) = ( ( log ` ( C ^c E ) ) / ( log ` B ) ) ) |
31 |
21 29 30
|
syl2anc |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ /\ E e. RR ) -> ( B logb ( C ^c E ) ) = ( ( log ` ( C ^c E ) ) / ( log ` B ) ) ) |
32 |
|
rpcndif0 |
|- ( C e. RR+ -> C e. ( CC \ { 0 } ) ) |
33 |
32
|
anim2i |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ ) -> ( B e. ( CC \ { 0 , 1 } ) /\ C e. ( CC \ { 0 } ) ) ) |
34 |
33
|
3adant3 |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ /\ E e. RR ) -> ( B e. ( CC \ { 0 , 1 } ) /\ C e. ( CC \ { 0 } ) ) ) |
35 |
|
logbval |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. ( CC \ { 0 } ) ) -> ( B logb C ) = ( ( log ` C ) / ( log ` B ) ) ) |
36 |
34 35
|
syl |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ /\ E e. RR ) -> ( B logb C ) = ( ( log ` C ) / ( log ` B ) ) ) |
37 |
36
|
oveq2d |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ /\ E e. RR ) -> ( E x. ( B logb C ) ) = ( E x. ( ( log ` C ) / ( log ` B ) ) ) ) |
38 |
20 31 37
|
3eqtr4d |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. RR+ /\ E e. RR ) -> ( B logb ( C ^c E ) ) = ( E x. ( B logb C ) ) ) |