Step |
Hyp |
Ref |
Expression |
1 |
|
zgt1rpn0n1 |
|- ( B e. ( ZZ>= ` 2 ) -> ( B e. RR+ /\ B =/= 0 /\ B =/= 1 ) ) |
2 |
|
relogbcl |
|- ( ( B e. RR+ /\ X e. RR+ /\ B =/= 1 ) -> ( B logb X ) e. RR ) |
3 |
2
|
3com23 |
|- ( ( B e. RR+ /\ B =/= 1 /\ X e. RR+ ) -> ( B logb X ) e. RR ) |
4 |
3
|
3expia |
|- ( ( B e. RR+ /\ B =/= 1 ) -> ( X e. RR+ -> ( B logb X ) e. RR ) ) |
5 |
4
|
3adant2 |
|- ( ( B e. RR+ /\ B =/= 0 /\ B =/= 1 ) -> ( X e. RR+ -> ( B logb X ) e. RR ) ) |
6 |
1 5
|
syl |
|- ( B e. ( ZZ>= ` 2 ) -> ( X e. RR+ -> ( B logb X ) e. RR ) ) |
7 |
6
|
imp |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( B logb X ) e. RR ) |