| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relogcl |  |-  ( A e. RR+ -> ( log ` A ) e. RR ) | 
						
							| 2 | 1 | recnd |  |-  ( A e. RR+ -> ( log ` A ) e. CC ) | 
						
							| 3 |  | efexp |  |-  ( ( ( log ` A ) e. CC /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( ( exp ` ( log ` A ) ) ^ N ) ) | 
						
							| 4 | 2 3 | sylan |  |-  ( ( A e. RR+ /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( ( exp ` ( log ` A ) ) ^ N ) ) | 
						
							| 5 |  | reeflog |  |-  ( A e. RR+ -> ( exp ` ( log ` A ) ) = A ) | 
						
							| 6 | 5 | oveq1d |  |-  ( A e. RR+ -> ( ( exp ` ( log ` A ) ) ^ N ) = ( A ^ N ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( A e. RR+ /\ N e. ZZ ) -> ( ( exp ` ( log ` A ) ) ^ N ) = ( A ^ N ) ) | 
						
							| 8 | 4 7 | eqtrd |  |-  ( ( A e. RR+ /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( A ^ N ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( ( A e. RR+ /\ N e. ZZ ) -> ( log ` ( exp ` ( N x. ( log ` A ) ) ) ) = ( log ` ( A ^ N ) ) ) | 
						
							| 10 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 11 |  | remulcl |  |-  ( ( N e. RR /\ ( log ` A ) e. RR ) -> ( N x. ( log ` A ) ) e. RR ) | 
						
							| 12 | 10 1 11 | syl2anr |  |-  ( ( A e. RR+ /\ N e. ZZ ) -> ( N x. ( log ` A ) ) e. RR ) | 
						
							| 13 |  | relogef |  |-  ( ( N x. ( log ` A ) ) e. RR -> ( log ` ( exp ` ( N x. ( log ` A ) ) ) ) = ( N x. ( log ` A ) ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( A e. RR+ /\ N e. ZZ ) -> ( log ` ( exp ` ( N x. ( log ` A ) ) ) ) = ( N x. ( log ` A ) ) ) | 
						
							| 15 | 9 14 | eqtr3d |  |-  ( ( A e. RR+ /\ N e. ZZ ) -> ( log ` ( A ^ N ) ) = ( N x. ( log ` A ) ) ) |