Step |
Hyp |
Ref |
Expression |
1 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
2 |
1
|
recnd |
|- ( A e. RR+ -> ( log ` A ) e. CC ) |
3 |
|
efexp |
|- ( ( ( log ` A ) e. CC /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( ( exp ` ( log ` A ) ) ^ N ) ) |
4 |
2 3
|
sylan |
|- ( ( A e. RR+ /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( ( exp ` ( log ` A ) ) ^ N ) ) |
5 |
|
reeflog |
|- ( A e. RR+ -> ( exp ` ( log ` A ) ) = A ) |
6 |
5
|
oveq1d |
|- ( A e. RR+ -> ( ( exp ` ( log ` A ) ) ^ N ) = ( A ^ N ) ) |
7 |
6
|
adantr |
|- ( ( A e. RR+ /\ N e. ZZ ) -> ( ( exp ` ( log ` A ) ) ^ N ) = ( A ^ N ) ) |
8 |
4 7
|
eqtrd |
|- ( ( A e. RR+ /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( A ^ N ) ) |
9 |
8
|
fveq2d |
|- ( ( A e. RR+ /\ N e. ZZ ) -> ( log ` ( exp ` ( N x. ( log ` A ) ) ) ) = ( log ` ( A ^ N ) ) ) |
10 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
11 |
|
remulcl |
|- ( ( N e. RR /\ ( log ` A ) e. RR ) -> ( N x. ( log ` A ) ) e. RR ) |
12 |
10 1 11
|
syl2anr |
|- ( ( A e. RR+ /\ N e. ZZ ) -> ( N x. ( log ` A ) ) e. RR ) |
13 |
|
relogef |
|- ( ( N x. ( log ` A ) ) e. RR -> ( log ` ( exp ` ( N x. ( log ` A ) ) ) ) = ( N x. ( log ` A ) ) ) |
14 |
12 13
|
syl |
|- ( ( A e. RR+ /\ N e. ZZ ) -> ( log ` ( exp ` ( N x. ( log ` A ) ) ) ) = ( N x. ( log ` A ) ) ) |
15 |
9 14
|
eqtr3d |
|- ( ( A e. RR+ /\ N e. ZZ ) -> ( log ` ( A ^ N ) ) = ( N x. ( log ` A ) ) ) |