| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relogoprlem.1 |  |-  ( ( ( log ` A ) e. CC /\ ( log ` B ) e. CC ) -> ( exp ` ( ( log ` A ) F ( log ` B ) ) ) = ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) | 
						
							| 2 |  | relogoprlem.2 |  |-  ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( ( log ` A ) F ( log ` B ) ) e. RR ) | 
						
							| 3 |  | reeflog |  |-  ( A e. RR+ -> ( exp ` ( log ` A ) ) = A ) | 
						
							| 4 |  | reeflog |  |-  ( B e. RR+ -> ( exp ` ( log ` B ) ) = B ) | 
						
							| 5 | 3 4 | oveqan12d |  |-  ( ( A e. RR+ /\ B e. RR+ ) -> ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) = ( A G B ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( ( A e. RR+ /\ B e. RR+ ) -> ( log ` ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) = ( log ` ( A G B ) ) ) | 
						
							| 7 |  | relogcl |  |-  ( A e. RR+ -> ( log ` A ) e. RR ) | 
						
							| 8 |  | relogcl |  |-  ( B e. RR+ -> ( log ` B ) e. RR ) | 
						
							| 9 |  | recn |  |-  ( ( log ` A ) e. RR -> ( log ` A ) e. CC ) | 
						
							| 10 |  | recn |  |-  ( ( log ` B ) e. RR -> ( log ` B ) e. CC ) | 
						
							| 11 | 1 | fveq2d |  |-  ( ( ( log ` A ) e. CC /\ ( log ` B ) e. CC ) -> ( log ` ( exp ` ( ( log ` A ) F ( log ` B ) ) ) ) = ( log ` ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) ) | 
						
							| 12 | 9 10 11 | syl2an |  |-  ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( log ` ( exp ` ( ( log ` A ) F ( log ` B ) ) ) ) = ( log ` ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) ) | 
						
							| 13 |  | relogef |  |-  ( ( ( log ` A ) F ( log ` B ) ) e. RR -> ( log ` ( exp ` ( ( log ` A ) F ( log ` B ) ) ) ) = ( ( log ` A ) F ( log ` B ) ) ) | 
						
							| 14 | 2 13 | syl |  |-  ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( log ` ( exp ` ( ( log ` A ) F ( log ` B ) ) ) ) = ( ( log ` A ) F ( log ` B ) ) ) | 
						
							| 15 | 12 14 | eqtr3d |  |-  ( ( ( log ` A ) e. RR /\ ( log ` B ) e. RR ) -> ( log ` ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) = ( ( log ` A ) F ( log ` B ) ) ) | 
						
							| 16 | 7 8 15 | syl2an |  |-  ( ( A e. RR+ /\ B e. RR+ ) -> ( log ` ( ( exp ` ( log ` A ) ) G ( exp ` ( log ` B ) ) ) ) = ( ( log ` A ) F ( log ` B ) ) ) | 
						
							| 17 | 6 16 | eqtr3d |  |-  ( ( A e. RR+ /\ B e. RR+ ) -> ( log ` ( A G B ) ) = ( ( log ` A ) F ( log ` B ) ) ) |