Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
pipos |
|- 0 < _pi |
3 |
|
pire |
|- _pi e. RR |
4 |
|
lt0neg2 |
|- ( _pi e. RR -> ( 0 < _pi <-> -u _pi < 0 ) ) |
5 |
3 4
|
ax-mp |
|- ( 0 < _pi <-> -u _pi < 0 ) |
6 |
2 5
|
mpbi |
|- -u _pi < 0 |
7 |
|
reim0 |
|- ( A e. RR -> ( Im ` A ) = 0 ) |
8 |
6 7
|
breqtrrid |
|- ( A e. RR -> -u _pi < ( Im ` A ) ) |
9 |
|
0re |
|- 0 e. RR |
10 |
9 3 2
|
ltleii |
|- 0 <_ _pi |
11 |
7 10
|
eqbrtrdi |
|- ( A e. RR -> ( Im ` A ) <_ _pi ) |
12 |
|
ellogrn |
|- ( A e. ran log <-> ( A e. CC /\ -u _pi < ( Im ` A ) /\ ( Im ` A ) <_ _pi ) ) |
13 |
1 8 11 12
|
syl3anbrc |
|- ( A e. RR -> A e. ran log ) |