| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relopabi.1 |
|- A = { <. x , y >. | ph } |
| 2 |
|
df-opab |
|- { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
| 3 |
1 2
|
eqtri |
|- A = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
| 4 |
3
|
eqabri |
|- ( z e. A <-> E. x E. y ( z = <. x , y >. /\ ph ) ) |
| 5 |
|
simpl |
|- ( ( z = <. x , y >. /\ ph ) -> z = <. x , y >. ) |
| 6 |
5
|
2eximi |
|- ( E. x E. y ( z = <. x , y >. /\ ph ) -> E. x E. y z = <. x , y >. ) |
| 7 |
4 6
|
sylbi |
|- ( z e. A -> E. x E. y z = <. x , y >. ) |
| 8 |
|
ax6evr |
|- E. u y = u |
| 9 |
|
pm3.21 |
|- ( <. x , y >. = z -> ( y = u -> ( y = u /\ <. x , y >. = z ) ) ) |
| 10 |
9
|
eximdv |
|- ( <. x , y >. = z -> ( E. u y = u -> E. u ( y = u /\ <. x , y >. = z ) ) ) |
| 11 |
8 10
|
mpi |
|- ( <. x , y >. = z -> E. u ( y = u /\ <. x , y >. = z ) ) |
| 12 |
|
opeq2 |
|- ( y = u -> <. x , y >. = <. x , u >. ) |
| 13 |
|
eqtr2 |
|- ( ( <. x , y >. = <. x , u >. /\ <. x , y >. = z ) -> <. x , u >. = z ) |
| 14 |
13
|
eqcomd |
|- ( ( <. x , y >. = <. x , u >. /\ <. x , y >. = z ) -> z = <. x , u >. ) |
| 15 |
12 14
|
sylan |
|- ( ( y = u /\ <. x , y >. = z ) -> z = <. x , u >. ) |
| 16 |
15
|
eximi |
|- ( E. u ( y = u /\ <. x , y >. = z ) -> E. u z = <. x , u >. ) |
| 17 |
11 16
|
syl |
|- ( <. x , y >. = z -> E. u z = <. x , u >. ) |
| 18 |
17
|
eqcoms |
|- ( z = <. x , y >. -> E. u z = <. x , u >. ) |
| 19 |
18
|
2eximi |
|- ( E. x E. y z = <. x , y >. -> E. x E. y E. u z = <. x , u >. ) |
| 20 |
|
excomim |
|- ( E. x E. y E. u z = <. x , u >. -> E. y E. x E. u z = <. x , u >. ) |
| 21 |
19 20
|
syl |
|- ( E. x E. y z = <. x , y >. -> E. y E. x E. u z = <. x , u >. ) |
| 22 |
|
vex |
|- x e. _V |
| 23 |
|
vex |
|- u e. _V |
| 24 |
22 23
|
pm3.2i |
|- ( x e. _V /\ u e. _V ) |
| 25 |
24
|
jctr |
|- ( z = <. x , u >. -> ( z = <. x , u >. /\ ( x e. _V /\ u e. _V ) ) ) |
| 26 |
25
|
2eximi |
|- ( E. x E. u z = <. x , u >. -> E. x E. u ( z = <. x , u >. /\ ( x e. _V /\ u e. _V ) ) ) |
| 27 |
|
df-xp |
|- ( _V X. _V ) = { <. x , u >. | ( x e. _V /\ u e. _V ) } |
| 28 |
|
df-opab |
|- { <. x , u >. | ( x e. _V /\ u e. _V ) } = { z | E. x E. u ( z = <. x , u >. /\ ( x e. _V /\ u e. _V ) ) } |
| 29 |
27 28
|
eqtri |
|- ( _V X. _V ) = { z | E. x E. u ( z = <. x , u >. /\ ( x e. _V /\ u e. _V ) ) } |
| 30 |
29
|
eqabri |
|- ( z e. ( _V X. _V ) <-> E. x E. u ( z = <. x , u >. /\ ( x e. _V /\ u e. _V ) ) ) |
| 31 |
26 30
|
sylibr |
|- ( E. x E. u z = <. x , u >. -> z e. ( _V X. _V ) ) |
| 32 |
31
|
eximi |
|- ( E. y E. x E. u z = <. x , u >. -> E. y z e. ( _V X. _V ) ) |
| 33 |
|
ax5e |
|- ( E. y z e. ( _V X. _V ) -> z e. ( _V X. _V ) ) |
| 34 |
7 21 32 33
|
4syl |
|- ( z e. A -> z e. ( _V X. _V ) ) |
| 35 |
34
|
ssriv |
|- A C_ ( _V X. _V ) |
| 36 |
|
df-rel |
|- ( Rel A <-> A C_ ( _V X. _V ) ) |
| 37 |
35 36
|
mpbir |
|- Rel A |