Step |
Hyp |
Ref |
Expression |
1 |
|
relopabi.1 |
|- A = { <. x , y >. | ph } |
2 |
|
df-opab |
|- { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
3 |
1 2
|
eqtri |
|- A = { z | E. x E. y ( z = <. x , y >. /\ ph ) } |
4 |
3
|
abeq2i |
|- ( z e. A <-> E. x E. y ( z = <. x , y >. /\ ph ) ) |
5 |
|
simpl |
|- ( ( z = <. x , y >. /\ ph ) -> z = <. x , y >. ) |
6 |
5
|
2eximi |
|- ( E. x E. y ( z = <. x , y >. /\ ph ) -> E. x E. y z = <. x , y >. ) |
7 |
4 6
|
sylbi |
|- ( z e. A -> E. x E. y z = <. x , y >. ) |
8 |
|
ax6evr |
|- E. u y = u |
9 |
|
pm3.21 |
|- ( <. x , y >. = z -> ( y = u -> ( y = u /\ <. x , y >. = z ) ) ) |
10 |
9
|
eximdv |
|- ( <. x , y >. = z -> ( E. u y = u -> E. u ( y = u /\ <. x , y >. = z ) ) ) |
11 |
8 10
|
mpi |
|- ( <. x , y >. = z -> E. u ( y = u /\ <. x , y >. = z ) ) |
12 |
|
opeq2 |
|- ( y = u -> <. x , y >. = <. x , u >. ) |
13 |
|
eqtr2 |
|- ( ( <. x , y >. = <. x , u >. /\ <. x , y >. = z ) -> <. x , u >. = z ) |
14 |
13
|
eqcomd |
|- ( ( <. x , y >. = <. x , u >. /\ <. x , y >. = z ) -> z = <. x , u >. ) |
15 |
12 14
|
sylan |
|- ( ( y = u /\ <. x , y >. = z ) -> z = <. x , u >. ) |
16 |
15
|
eximi |
|- ( E. u ( y = u /\ <. x , y >. = z ) -> E. u z = <. x , u >. ) |
17 |
11 16
|
syl |
|- ( <. x , y >. = z -> E. u z = <. x , u >. ) |
18 |
17
|
eqcoms |
|- ( z = <. x , y >. -> E. u z = <. x , u >. ) |
19 |
18
|
2eximi |
|- ( E. x E. y z = <. x , y >. -> E. x E. y E. u z = <. x , u >. ) |
20 |
|
excomim |
|- ( E. x E. y E. u z = <. x , u >. -> E. y E. x E. u z = <. x , u >. ) |
21 |
19 20
|
syl |
|- ( E. x E. y z = <. x , y >. -> E. y E. x E. u z = <. x , u >. ) |
22 |
|
vex |
|- x e. _V |
23 |
|
vex |
|- u e. _V |
24 |
22 23
|
pm3.2i |
|- ( x e. _V /\ u e. _V ) |
25 |
24
|
jctr |
|- ( z = <. x , u >. -> ( z = <. x , u >. /\ ( x e. _V /\ u e. _V ) ) ) |
26 |
25
|
2eximi |
|- ( E. x E. u z = <. x , u >. -> E. x E. u ( z = <. x , u >. /\ ( x e. _V /\ u e. _V ) ) ) |
27 |
|
df-xp |
|- ( _V X. _V ) = { <. x , u >. | ( x e. _V /\ u e. _V ) } |
28 |
|
df-opab |
|- { <. x , u >. | ( x e. _V /\ u e. _V ) } = { z | E. x E. u ( z = <. x , u >. /\ ( x e. _V /\ u e. _V ) ) } |
29 |
27 28
|
eqtri |
|- ( _V X. _V ) = { z | E. x E. u ( z = <. x , u >. /\ ( x e. _V /\ u e. _V ) ) } |
30 |
29
|
abeq2i |
|- ( z e. ( _V X. _V ) <-> E. x E. u ( z = <. x , u >. /\ ( x e. _V /\ u e. _V ) ) ) |
31 |
26 30
|
sylibr |
|- ( E. x E. u z = <. x , u >. -> z e. ( _V X. _V ) ) |
32 |
31
|
eximi |
|- ( E. y E. x E. u z = <. x , u >. -> E. y z e. ( _V X. _V ) ) |
33 |
7 21 32
|
3syl |
|- ( z e. A -> E. y z e. ( _V X. _V ) ) |
34 |
|
ax5e |
|- ( E. y z e. ( _V X. _V ) -> z e. ( _V X. _V ) ) |
35 |
33 34
|
syl |
|- ( z e. A -> z e. ( _V X. _V ) ) |
36 |
35
|
ssriv |
|- A C_ ( _V X. _V ) |
37 |
|
df-rel |
|- ( Rel A <-> A C_ ( _V X. _V ) ) |
38 |
36 37
|
mpbir |
|- Rel A |